# 2 "asmcomp/i386/proc.ml" (**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Description of the Intel 386 processor *) open Misc open Arch open Cmm open Reg open Mach (* Which asm conventions to use *) let masm = match Config.ccomp_type with | "msvc" -> true | _ -> false (* Registers available for register allocation *) (* Register map: eax 0 eax - edi: function arguments and results ebx 1 eax: C function results ecx 2 ebx, esi, edi, ebp: preserved by C edx 3 esi 4 edi 5 ebp 6 tos 100 top of floating-point stack. *) let int_reg_name = if masm then [| "eax"; "ebx"; "ecx"; "edx"; "esi"; "edi"; "ebp" |] else [| "%eax"; "%ebx"; "%ecx"; "%edx"; "%esi"; "%edi"; "%ebp" |] let float_reg_name = if masm then [| "tos" |] else [| "%tos" |] let num_register_classes = 2 let register_class r = match r.typ with | Val | Int | Addr -> 0 | Float -> 1 let num_available_registers = [| 7; 0 |] let first_available_register = [| 0; 100 |] let register_name r = if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100) (* There is little scheduling, and some operations are more compact when their argument is %eax. *) let rotate_registers = false (* Representation of hard registers by pseudo-registers *) let hard_int_reg = let v = Array.make 7 Reg.dummy in for i = 0 to 6 do v.(i) <- Reg.at_location Int (Reg i) done; v let hard_float_reg = [| Reg.at_location Float (Reg 100) |] let all_phys_regs = Array.append hard_int_reg hard_float_reg let phys_reg n = if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100) let eax = phys_reg 0 let ebx = phys_reg 1 let ecx = phys_reg 2 let edx = phys_reg 3 let stack_slot slot ty = Reg.at_location ty (Stack slot) (* Instruction selection *) let word_addressed = false (* Calling conventions *) let size_domainstate_args = 64 * size_int let calling_conventions first_int last_int first_float last_float make_stack arg = let loc = Array.make (Array.length arg) Reg.dummy in let int = ref first_int in let float = ref first_float in let ofs = ref (- size_domainstate_args) in for i = 0 to Array.length arg - 1 do match arg.(i) with Val | Int | Addr as ty -> if !int <= last_int then begin loc.(i) <- phys_reg !int; incr int end else begin loc.(i) <- stack_slot (make_stack !ofs) ty; ofs := !ofs + size_int end | Float -> if !float <= last_float then begin loc.(i) <- phys_reg !float; incr float end else begin loc.(i) <- stack_slot (make_stack !ofs) Float; ofs := !ofs + size_float end done; (loc, Misc.align (max 0 !ofs) stack_alignment) let incoming ofs = if ofs >= 0 then Incoming ofs else Domainstate (ofs + size_domainstate_args) let outgoing ofs = if ofs >= 0 then Outgoing ofs else Domainstate (ofs + size_domainstate_args) let not_supported _ofs = fatal_error "Proc.loc_results: cannot call" let loc_arguments arg = calling_conventions 0 5 100 99 outgoing arg let loc_parameters arg = let (loc, _ofs) = calling_conventions 0 5 100 99 incoming arg in loc let loc_results res = let (loc, _ofs) = calling_conventions 0 5 100 100 not_supported res in loc let max_arguments_for_tailcalls = 6 (* in registers *) + 64 (* in domain state *) let loc_external_arguments _arg = fatal_error "Proc.loc_external_arguments" let loc_external_results res = match res with | [| Int; Int |] -> [|eax; edx|] | _ -> let (loc, _ofs) = calling_conventions 0 0 100 100 not_supported res in loc let loc_exn_bucket = eax (* See "System V Application Binary Interface Intel386 Architecture Processor Supplement Version 1.0" (https://www.uclibc.org/docs/psABI-i386.pdf) *) let int_dwarf_reg_numbers = [| 0; 3; 1; 2; 6; 7; 5 |] let float_dwarf_reg_numbers = [| |] let dwarf_register_numbers ~reg_class = match reg_class with | 0 -> int_dwarf_reg_numbers | 1 -> float_dwarf_reg_numbers | _ -> Misc.fatal_errorf "Bad register class %d" reg_class let stack_ptr_dwarf_register_number = 4 (* Volatile registers: the x87 top of FP stack is *) let reg_is_volatile = function | { typ = Float; loc = Reg _ } -> true | _ -> false let regs_are_volatile rs = try for i = 0 to Array.length rs - 1 do if reg_is_volatile rs.(i) then raise Exit done; false with Exit -> true (* Registers destroyed by operations *) let destroyed_at_c_call = (* ebx, esi, edi, ebp preserved *) [|eax; ecx; edx|] let destroyed_at_oper = function Iop(Icall_ind | Icall_imm _ | Iextcall { alloc = true; _}) -> all_phys_regs | Iop(Iextcall { alloc = false; }) -> destroyed_at_c_call | Iop(Iintop(Idiv | Imod)) -> [| eax; edx |] | Iop(Ialloc _) -> [| eax; ebx |] | Iop(Iintop Imulh) -> [| eax |] | Iop(Iintop(Icomp _) | Iintop_imm(Icomp _, _)) -> [| eax |] | Iop(Iintoffloat) -> [| eax |] | Iifthenelse(Ifloattest _, _, _) -> [| eax |] | Itrywith _ -> [| edx |] | _ -> [||] let destroyed_at_raise = all_phys_regs let destroyed_at_reloadretaddr = [| |] (* Maximal register pressure *) let safe_register_pressure _op = 4 let max_register_pressure = function Iextcall _ -> [| 4; max_int |] | Iintop(Idiv | Imod) -> [| 5; max_int |] | Ialloc _ | Iintop(Icomp _) | Iintop_imm(Icomp _, _) | Iintoffloat -> [| 6; max_int |] | _ -> [|7; max_int |] (* Layout of the stack frame *) let frame_required fd = let frame_size_at_top_of_function = (* cf. [frame_size] in emit.mlp. *) Misc.align (4*fd.fun_num_stack_slots.(0) + 8*fd.fun_num_stack_slots.(1) + 4) stack_alignment in frame_size_at_top_of_function > 4 let prologue_required fd = frame_required fd (* Calling the assembler *) let assemble_file infile outfile = X86_proc.assemble_file infile outfile let init () = ()