(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Insertion of moves to suggest possible spilling / reloading points before register allocation. *) open Reg open Mach (* We say that a register is "destroyed" if it is live across a construct that potentially destroys all physical registers: function calls or try...with constructs. The "destroyed" registers must therefore reside in the stack during these instructions.. We will insert spills (stores) just after they are defined, and reloads just before their first use following a "destroying" construct. Instructions with more live registers than actual registers also "destroy" registers: we mark as "destroyed" the registers live across the instruction that haven't been used for the longest time. These registers will be spilled and reloaded as described above. *) (* Association of spill registers to registers *) type reload_data = { spill_env : Reg.t Reg.Map.t ref; mutable use_date : int Reg.Map.t; (* Record the position of last use of registers *) mutable current_date : int; mutable destroyed_at_fork : (instruction * Reg.Set.t) list; (* A-list recording what is destroyed at if-then-else points. *) reload_at_exit : (int, Reg.Set.t) Hashtbl.t; } type spill_data = { spill_env : Reg.t Reg.Map.t ref; destroyed_at_fork : (instruction * Reg.Set.t) list; (* A-list recording what is destroyed at if-then-else points. *) mutable spill_at_raise : Reg.Set.t; mutable inside_arm : bool; mutable inside_catch : bool; spill_at_exit : (int, Reg.Set.t) Hashtbl.t; } let create_reload () = { spill_env = ref Reg.Map.empty; use_date = Reg.Map.empty; current_date = 0; destroyed_at_fork = []; reload_at_exit = Hashtbl.create 20; } let create_spill (reload : reload_data) = { spill_env = reload.spill_env; destroyed_at_fork = reload.destroyed_at_fork; spill_at_raise = Reg.Set.empty; inside_arm = false; inside_catch = false; spill_at_exit = Hashtbl.create 20; } let spill_reg spill_env r = try Reg.Map.find r !spill_env with Not_found -> let spill_r = Reg.create r.typ in spill_r.spill <- true; if not (Reg.anonymous r) then spill_r.raw_name <- r.raw_name; spill_env := Reg.Map.add r spill_r !spill_env; spill_r let record_use t regv = for i = 0 to Array.length regv - 1 do let r = regv.(i) in let prev_date = try Reg.Map.find r t.use_date with Not_found -> 0 in if t.current_date > prev_date then t.use_date <- Reg.Map.add r t.current_date t.use_date done (* Check if the register pressure overflows the maximum pressure allowed at that point. If so, spill enough registers to lower the pressure. *) let add_superpressure_regs t op live_regs res_regs spilled = let max_pressure = Proc.max_register_pressure op in let regs = Reg.add_set_array live_regs res_regs in (* Compute the pressure in each register class *) let pressure = Array.make Proc.num_register_classes 0 in Reg.Set.iter (fun r -> if Reg.Set.mem r spilled then () else begin match r.loc with Stack _ -> () | _ -> let c = Proc.register_class r in pressure.(c) <- pressure.(c) + 1 end) regs; (* Check if pressure is exceeded for each class. *) let rec check_pressure cl spilled = if cl >= Proc.num_register_classes then spilled else if pressure.(cl) <= max_pressure.(cl) then check_pressure (cl+1) spilled else begin (* Find the least recently used, unspilled, unallocated, live register in the class *) let lru_date = ref 1000000 and lru_reg = ref Reg.dummy in Reg.Set.iter (fun r -> if Proc.register_class r = cl && not (Reg.Set.mem r spilled) && r.loc = Unknown then begin try let d = Reg.Map.find r t.use_date in if d < !lru_date then begin lru_date := d; lru_reg := r end with Not_found -> (* Should not happen *) () end) live_regs; if !lru_reg != Reg.dummy then begin pressure.(cl) <- pressure.(cl) - 1; check_pressure cl (Reg.Set.add !lru_reg spilled) end else (* Couldn't find any spillable register, give up for this class *) check_pressure (cl+1) spilled end in check_pressure 0 spilled (* First pass: insert reload instructions based on an approximation of what is destroyed at pressure points. *) let add_reloads spill_env regset i = Reg.Set.fold (fun r i -> instr_cons (Iop Ireload) [|spill_reg spill_env r|] [|r|] i) regset i let get_reload_at_exit t k = match Hashtbl.find_opt t.reload_at_exit k with | None -> Reg.Set.empty | Some s -> s let set_reload_at_exit t k s = Hashtbl.replace t.reload_at_exit k s let rec reload (t : reload_data) i before = t.current_date <- succ t.current_date; record_use t i.arg; record_use t i.res; match i.desc with Iend -> (i, before) | Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) -> (add_reloads t.spill_env (Reg.inter_set_array before i.arg) i, Reg.Set.empty) | Iop(Icall_ind | Icall_imm _ | Iextcall { alloc = true; }) -> (* All regs live across must be spilled *) let (new_next, finally) = reload t i.next i.live in (add_reloads t.spill_env (Reg.inter_set_array before i.arg) (instr_cons_debug i.desc i.arg i.res i.dbg new_next), finally) | Iop op -> let new_before = (* Quick check to see if the register pressure is below the maximum *) if !Clflags.use_linscan || (Reg.Set.cardinal i.live + Array.length i.res <= Proc.safe_register_pressure op) then before else add_superpressure_regs t op i.live i.res before in let after = Reg.diff_set_array (Reg.diff_set_array new_before i.arg) i.res in let (new_next, finally) = reload t i.next after in (add_reloads t.spill_env (Reg.inter_set_array new_before i.arg) (instr_cons_debug i.desc i.arg i.res i.dbg new_next), finally) | Iifthenelse(test, ifso, ifnot) -> let at_fork = Reg.diff_set_array before i.arg in let date_fork = t.current_date in let (new_ifso, after_ifso) = reload t ifso at_fork in let date_ifso = t.current_date in t.current_date <- date_fork; let (new_ifnot, after_ifnot) = reload t ifnot at_fork in t.current_date <- Int.max date_ifso t.current_date; let (new_next, finally) = reload t i.next (Reg.Set.union after_ifso after_ifnot) in let new_i = instr_cons (Iifthenelse(test, new_ifso, new_ifnot)) i.arg i.res new_next in t.destroyed_at_fork <- (new_i, at_fork) :: t.destroyed_at_fork; (add_reloads t.spill_env (Reg.inter_set_array before i.arg) new_i, finally) | Iswitch(index, cases) -> let at_fork = Reg.diff_set_array before i.arg in let date_fork = t.current_date in let date_join = ref 0 in let after_cases = ref Reg.Set.empty in let new_cases = Array.map (fun c -> t.current_date <- date_fork; let (new_c, after_c) = reload t c at_fork in after_cases := Reg.Set.union !after_cases after_c; date_join := Int.max !date_join t.current_date; new_c) cases in t.current_date <- !date_join; let (new_next, finally) = reload t i.next !after_cases in (add_reloads t.spill_env (Reg.inter_set_array before i.arg) (instr_cons (Iswitch(index, new_cases)) i.arg i.res new_next), finally) | Icatch(rec_flag, handlers, body) -> let (new_body, after_body) = reload t body before in let rec fixpoint () = let at_exits = List.map (fun (nfail, _) -> (nfail, get_reload_at_exit t nfail)) handlers in let res = List.map2 (fun (nfail', handler) (nfail, at_exit) -> assert(nfail = nfail'); reload t handler at_exit) handlers at_exits in match rec_flag with | Cmm.Nonrecursive -> res | Cmm.Recursive -> let equal = List.for_all2 (fun (nfail', _) (nfail, at_exit) -> assert(nfail = nfail'); Reg.Set.equal at_exit (get_reload_at_exit t nfail)) handlers at_exits in if equal then res else fixpoint () in let res = fixpoint () in let union = List.fold_left (fun acc (_, after_handler) -> Reg.Set.union acc after_handler) after_body res in let (new_next, finally) = reload t i.next union in let new_handlers = List.map2 (fun (nfail, _) (new_handler, _) -> nfail, new_handler) handlers res in (instr_cons (Icatch(rec_flag, new_handlers, new_body)) i.arg i.res new_next, finally) | Iexit nfail -> set_reload_at_exit t nfail (Reg.Set.union (get_reload_at_exit t nfail) before); (i, Reg.Set.empty) | Itrywith(body, handler) -> let (new_body, after_body) = reload t body before in (* All registers live at the beginning of the handler are destroyed, except the exception bucket *) let before_handler = Reg.Set.remove Proc.loc_exn_bucket (Reg.add_set_array handler.live handler.arg) in let (new_handler, after_handler) = reload t handler before_handler in let (new_next, finally) = reload t i.next (Reg.Set.union after_body after_handler) in (instr_cons (Itrywith(new_body, new_handler)) i.arg i.res new_next, finally) | Iraise _ -> (add_reloads t.spill_env (Reg.inter_set_array before i.arg) i, Reg.Set.empty) (* Second pass: add spill instructions based on what we've decided to reload. That is, any register that may be reloaded in the future must be spilled just after its definition. *) (* As an optimization, if a register needs to be spilled in one branch of a conditional but not in the other, then we spill it late on entrance in the branch that needs it spilled. NB: This strategy is turned off in loops, as it may prevent a spill from being lifted up all the way out of the loop. NB again: This strategy is also off in switch arms as it generates many useless spills inside switch arms NB ter: is it the same thing for catch bodies ? *) let get_spill_at_exit t k = match Hashtbl.find_opt t.spill_at_exit k with | None -> Reg.Set.empty | Some s -> s let set_spill_at_exit t k s = Hashtbl.replace t.spill_at_exit k s let add_spills t regset i = Reg.Set.fold (fun r i -> instr_cons (Iop Ispill) [|r|] [|spill_reg t r|] i) regset i let rec spill (t : spill_data) i finally = match i.desc with Iend -> (i, finally) | Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) -> (i, Reg.Set.empty) | Iop Ireload -> let (new_next, after) = spill t i.next finally in let before1 = Reg.diff_set_array after i.res in (instr_cons i.desc i.arg i.res new_next, Reg.add_set_array before1 i.res) | Iop op -> let (new_next, after) = spill t i.next finally in let before1 = Reg.diff_set_array after i.res in let before = if operation_can_raise op then Reg.Set.union before1 t.spill_at_raise else before1 in (instr_cons_debug i.desc i.arg i.res i.dbg (add_spills t.spill_env (Reg.inter_set_array after i.res) new_next), before) | Iifthenelse(test, ifso, ifnot) -> let (new_next, at_join) = spill t i.next finally in let (new_ifso, before_ifso) = spill t ifso at_join in let (new_ifnot, before_ifnot) = spill t ifnot at_join in if t.inside_arm || t.inside_catch then (instr_cons (Iifthenelse(test, new_ifso, new_ifnot)) i.arg i.res new_next, Reg.Set.union before_ifso before_ifnot) else begin let destroyed = List.assq i t.destroyed_at_fork in let spill_ifso_branch = Reg.Set.diff (Reg.Set.diff before_ifso before_ifnot) destroyed and spill_ifnot_branch = Reg.Set.diff (Reg.Set.diff before_ifnot before_ifso) destroyed in (instr_cons (Iifthenelse(test, add_spills t.spill_env spill_ifso_branch new_ifso, add_spills t.spill_env spill_ifnot_branch new_ifnot)) i.arg i.res new_next, Reg.Set.diff (Reg.Set.diff (Reg.Set.union before_ifso before_ifnot) spill_ifso_branch) spill_ifnot_branch) end | Iswitch(index, cases) -> let (new_next, at_join) = spill t i.next finally in let saved_inside_arm = t.inside_arm in t.inside_arm <- true ; let before = ref Reg.Set.empty in let new_cases = Array.map (fun c -> let (new_c, before_c) = spill t c at_join in before := Reg.Set.union !before before_c; new_c) cases in t.inside_arm <- saved_inside_arm ; (instr_cons (Iswitch(index, new_cases)) i.arg i.res new_next, !before) | Icatch(rec_flag, handlers, body) -> let (new_next, at_join) = spill t i.next finally in let saved_inside_catch = t.inside_catch in t.inside_catch <- true ; let rec fixpoint () = let res = List.map (fun (_, handler) -> spill t handler at_join) handlers in let update changed (k, _handler) (_new_handler, before_handler) = if Reg.Set.equal before_handler (get_spill_at_exit t k) then changed else (set_spill_at_exit t k before_handler; true) in let changed = List.fold_left2 update false handlers res in if rec_flag = Cmm.Recursive && changed then fixpoint () else res in let res = fixpoint () in t.inside_catch <- saved_inside_catch ; let (new_body, before) = spill t body at_join in let new_handlers = List.map2 (fun (nfail, _) (new_handler, _) -> (nfail, new_handler)) handlers res in (instr_cons (Icatch(rec_flag, new_handlers, new_body)) i.arg i.res new_next, before) | Iexit nfail -> (i, get_spill_at_exit t nfail) | Itrywith(body, handler) -> let (new_next, at_join) = spill t i.next finally in let (new_handler, before_handler) = spill t handler at_join in let saved_spill_at_raise = t.spill_at_raise in t.spill_at_raise <- before_handler; let (new_body, before_body) = spill t body at_join in t.spill_at_raise <- saved_spill_at_raise; (instr_cons (Itrywith(new_body, new_handler)) i.arg i.res new_next, before_body) | Iraise _ -> (i, t.spill_at_raise) (* Entry point *) let fundecl f = let reload_data = create_reload () in let (body1, _) = reload reload_data f.fun_body Reg.Set.empty in let spill_data = create_spill reload_data in let (body2, tospill_at_entry) = spill spill_data body1 Reg.Set.empty in let new_body = add_spills spill_data.spill_env (Reg.inter_set_array tospill_at_entry f.fun_args) body2 in { f with fun_body = new_body }