\section{s:value-expr}{Expressions} %HEVEA\cutname{expr.html} \ikwd{in\@\texttt{in}|see{\texttt{let}}} \ikwd{and\@\texttt{and}} \ikwd{rec\@\texttt{rec}|see{\texttt{let}, \texttt{module}}} \ikwd{let\@\texttt{let}} \ikwd{try\@\texttt{try}} \ikwd{function\@\texttt{function}} \ikwd{fun\@\texttt{fun}} \ikwd{with\@\texttt{with}} \ikwd{done\@\texttt{done}|see{\texttt{while}, \texttt{for}}} \ikwd{do\@\texttt{do}|see{\texttt{while}, \texttt{for}}} \ikwd{downto\@\texttt{downto}|see{\texttt{for}}} \ikwd{to\@\texttt{to}|see{\texttt{for}}} \ikwd{for\@\texttt{for}} \ikwd{else\@\texttt{else}|see{\texttt{if}}} \ikwd{then\@\texttt{then}|see{\texttt{if}}} \ikwd{if\@\texttt{if}} \ikwd{or\@\texttt{or}} \ikwd{match\@\texttt{match}} \ikwd{begin\@\texttt{begin}} \ikwd{end\@\texttt{end}} \ikwd{when\@\texttt{when}} \ikwd{new\@\texttt{new}} \ikwd{object\@\texttt{object}} \ikwd{lazy\@\texttt{lazy}} \begin{syntax} expr: value-path | constant | '(' expr ')' | 'begin' expr 'end' | '(' expr ':' typexpr ')' | expr {{ ',' expr }} | constr expr | "`"tag-name expr | expr '::' expr | '[' expr { ';' expr } [';'] ']' | '[|' expr { ';' expr } [';'] '|]' | '{' field [':' typexpr] ['=' expr]% { ';' field [':' typexpr] ['=' expr] } [';'] '}' | '{' expr 'with' field [':' typexpr] ['=' expr]% { ';' field [':' typexpr] ['=' expr] } [';'] '}' | expr {{ argument }} | prefix-symbol expr | '-' expr | '-.' expr | expr infix-op expr | expr '.' field | expr '.' field '<-' expr | expr '.(' expr ')' | expr '.(' expr ')' '<-' expr | expr '.[' expr ']' | expr '.[' expr ']' '<-' expr | 'if' expr 'then' expr [ 'else' expr ] | 'while' expr 'do' expr 'done' | 'for' value-name '=' expr ( 'to' || 'downto' ) expr 'do' expr 'done' | expr ';' expr | 'match' expr 'with' pattern-matching | 'function' pattern-matching | 'fun' {{ parameter }} [ ':' typexpr ] '->' expr | 'try' expr 'with' pattern-matching | 'let' ['rec'] let-binding { 'and' let-binding } 'in' expr | "let" "exception" constr-decl "in" expr | 'let' 'module' module-name { '(' module-name ':' module-type ')' } [ ':' module-type ] \\ '=' module-expr 'in' expr | '(' expr ':>' typexpr ')' | '(' expr ':' typexpr ':>' typexpr ')' | 'assert' expr | 'lazy' expr | local-open | object-expr ; %BEGIN LATEX \end{syntax} \begin{syntax} %END LATEX argument: expr | '~' label-name | '~' label-name ':' expr | '?' label-name | '?' label-name ':' expr ; %\end{syntax} \begin{syntax} pattern-matching: [ '|' ] pattern ['when' expr] '->' expr { '|' pattern ['when' expr] '->' expr } ; let-binding: pattern '=' expr | value-name { parameter } [':' typexpr] [':>' typexpr] '=' expr | value-name ':' poly-typexpr '=' expr %since 3.12 ; parameter: pattern | '~' label-name | '~' '(' label-name [':' typexpr] ')' | '~' label-name ':' pattern | '?' label-name | '?' '(' label-name [':' typexpr] ['=' expr] ')' | '?' label-name ':' pattern | '?' label-name ':' '(' pattern [':' typexpr] ['=' expr] ')' ; local-open: | "let" "open" module-path "in" expr | module-path '.(' expr ')' | module-path '.[' expr ']' | module-path '.[|' expr '|]' | module-path '.{' expr '}' | module-path '.{<' expr '>}' ; object-expr: | 'new' class-path | 'object' class-body 'end' | expr '#' method-name | inst-var-name | inst-var-name '<-' expr | '{<' [ inst-var-name ['=' expr] { ';' inst-var-name ['=' expr] } [';'] ] '>}' \end{syntax} See also the following language extensions: \hyperref[s:first-class-modules]{first-class modules}, \hyperref[s:explicit-overriding-open]{overriding in open statements}, \hyperref[s:bigarray-access]{syntax for Bigarray access}, \hyperref[s:attributes]{attributes}, \hyperref[s:extension-nodes]{extension nodes}, \hyperref[s:index-operators]{extended indexing operators}, \hyperref[s:array-literals]{type-directed disambiguation of array literals}, and \hyperref[s:labeled-tuples]{labeled tuples}. \subsection{ss:precedence-and-associativity}{Precedence and associativity} The table below shows the relative precedences and associativity of operators and non-closed constructions. The constructions with higher precedence come first. For infix and prefix symbols, we write ``"*"\ldots'' to mean ``any symbol starting with "*"''. % Note that this table is duplicated in stdlib/ocaml_operators.mld, % these tables should be kept in sync with the one below. \ikwd{or\@\texttt{or}}% \ikwd{if\@\texttt{if}}% \ikwd{fun\@\texttt{fun}}% \ikwd{function\@\texttt{function}}% \ikwd{match\@\texttt{match}}% \ikwd{try\@\texttt{try}}% \ikwd{let\@\texttt{let}}% \ikwd{mod\@\texttt{mod}} \ikwd{land\@\texttt{land}} \ikwd{lor\@\texttt{lor}} \ikwd{lxor\@\texttt{lxor}} \ikwd{lsl\@\texttt{lsl}} \ikwd{lsr\@\texttt{lsr}} \ikwd{asr\@\texttt{asr}} \begin{tableau}{|l|l|}{Construction or operator}{Associativity} \entree{prefix-symbol}{--} \entree{". .( .[ .{" (see section~\ref{s:bigarray-access})}{--} \entree{"#"\ldots}{left} \entree{function application, constructor application, tag application, "assert", "lazy"}{left} \entree{"- -." (prefix)}{--} \entree{"**"\ldots" lsl lsr asr"}{right} \entree{"*"\ldots" /"\ldots" %"\ldots" mod land lor lxor"}{left} %% "`"@ident@"`" \entree{"+"\ldots" -"\ldots}{left} \entree{"::"}{right} \entree{{\tt \char64}\ldots " ^"\ldots}{right} \entree{"="\ldots" <"\ldots" >"\ldots" |"\ldots" &"\ldots" $"\ldots" !="}{left} \entree{"& &&"}{right} \entree{"or ||"}{right} \entree{","}{--} \entree{"<- :="}{right} \entree{"if"}{--} \entree{";"}{right} \entree{"let match fun function try"}{--} \end{tableau} It is simple to test or refresh one's understanding: \begin{caml_example}{toplevel} 3 + 3 mod 2, 3 + (3 mod 2), (3 + 3) mod 2;; \end{caml_example} \subsection{ss:expr-basic}{Basic expressions} \subsubsection*{sss:expr-constants}{Constants} An expression consisting in a constant evaluates to this constant. For example, \texttt{3.14} or \texttt{[||]}. \subsubsection*{sss:expr-var}{Value paths} An expression consisting in an access path evaluates to the value bound to this path in the current evaluation environment. The path can be either a value name or an access path to a value component of a module. \begin{caml_example}{toplevel} Float.ArrayLabels.to_list;; \end{caml_example} \subsubsection*{sss:expr-parenthesized}{Parenthesized expressions} \ikwd{begin\@\texttt{begin}} \ikwd{end\@\texttt{end}} The expressions @'(' expr ')'@ and @'begin' expr 'end'@ have the same value as @expr@. The two constructs are semantically equivalent, but it is good style to use @'begin' \ldots 'end'@ inside control structures: \begin{alltt} if \ldots then begin \ldots ; \ldots end else begin \ldots ; \ldots end \end{alltt} and @'(' \ldots ')'@ for the other grouping situations. \begin{caml_example}{toplevel} let x = 1 + 2 * 3 let y = (1 + 2) * 3;; \end{caml_example} \begin{caml_example}{toplevel} let f a b = if a = b then print_endline "Equal" else begin print_string "Not Equal: "; print_int a; print_string " and "; print_int b; print_newline () end;; \end{caml_example} Parenthesized expressions can contain a type constraint, as in @'(' expr ':' typexpr ')'@. This constraint forces the type of @expr@ to be compatible with @typexpr@. Parenthesized expressions can also contain coercions @'(' expr [':' typexpr] ':>' typexpr')'@ (see subsection~\ref{ss:expr-coercions} below). \subsubsection*{sss:expr-functions-application}{Function application} Function application is denoted by juxtaposition of (possibly labeled) expressions. The expression @expr argument_1 \ldots argument_n@ evaluates the expression @expr@ and those appearing in @argument_1@ to @argument_n@. The expression @expr@ must evaluate to a functional value $f$, which is then applied to the values of @argument_1, \ldots, argument_n@. The order in which the expressions @expr, argument_1, \ldots, argument_n@ are evaluated is not specified. \begin{caml_example}{toplevel} List.fold_left ( + ) 0 [1; 2; 3; 4; 5];; \end{caml_example} Arguments and parameters are matched according to their respective labels. Argument order is irrelevant, except among arguments with the same label, or no label. \begin{caml_example}{toplevel} ListLabels.fold_left ~f:( @ ) ~init:[] [[1; 2; 3]; [4; 5; 6]; [7; 8; 9]];; \end{caml_example} If a parameter is specified as optional (label prefixed by @"?"@) in the type of @expr@, the corresponding argument will be automatically wrapped with the constructor "Some", except if the argument itself is also prefixed by @"?"@, in which case it is passed as is. \begin{caml_example}{toplevel} let fullname ?title first second = match title with | Some t -> t ^ " " ^ first ^ " " ^ second | None -> first ^ " " ^ second let name = fullname ~title:"Mrs" "Jane" "Fisher" let address ?title first second town = fullname ?title first second ^ "\n" ^ town;; \end{caml_example} If a non-labeled argument is passed, and its corresponding parameter is preceded by one or several optional parameters, then these parameters are {\em defaulted}, {\em i.e.} the value "None" will be passed for them. % All other missing parameters (without corresponding argument), both optional and non-optional, will be kept, and the result of the function will still be a function of these missing parameters to the body of $f$. \begin{caml_example}{toplevel} let fullname ?title first second = match title with | Some t -> t ^ " " ^ first ^ " " ^ second | None -> first ^ " " ^ second let name = fullname "Jane" "Fisher";; \end{caml_example} In all cases but exact match of order and labels, without optional parameters, the function type should be known at the application point. This can be ensured by adding a type constraint. Principality of the derivation can be checked in the "-principal" mode. As a special case, OCaml supports "labels-omitted" full applications: if the function has a known arity, all the arguments are unlabeled, and their number matches the number of non-optional parameters, then labels are ignored and non-optional parameters are matched in their definition order. Optional arguments are defaulted. This omission of labels is discouraged and results in a warning, see \ref{ss:warn6}. \subsubsection*{sss:expr-function-definition}{Function definition} Two syntactic forms are provided to define functions. The first form is introduced by the keyword "function": \ikwd{function\@\texttt{function}} $$\begin{array}{rlll} \token{function} & \textsl{pattern}_1 & \token{->} & \textsl{expr}_1 \\ \token{|} & \ldots \\ \token{|} & \textsl{pattern}_n & \token{->} & \textsl{expr}_n \end{array}$$ This expression evaluates to a functional value with one argument. When this function is applied to a value \var{v}, this value is matched against each pattern @pattern_1@ to @pattern_n@. If one of these matchings succeeds, that is, if the value \var{v} matches the pattern @pattern_i@ for some \var{i}, then the expression @expr_i@ associated to the selected pattern is evaluated, and its value becomes the value of the function application. The evaluation of @expr_i@ takes place in an environment enriched by the bindings performed during the matching. If several patterns match the argument \var{v}, the one that occurs first in the function definition is selected. If none of the patterns matches the argument, the exception "Match_failure" is raised. % \index{Matchfailure\@\verb`Match_failure`} \begin{caml_example}{toplevel} (function (0, 0) -> "both zero" | (0, _) -> "first only zero" | (_, 0) -> "second only zero" | (_, _) -> "neither zero") (7, 0);; \end{caml_example} The other form of function definition is introduced by the keyword "fun": \ikwd{fun\@\texttt{fun}} \begin{center} @"fun" parameter_1 \ldots parameter_n "->" expr@ \end{center} This expression is equivalent to: \begin{center} @"fun" parameter_1 "->" \ldots "fun" parameter_n "->" expr@ \end{center} \begin{caml_example}{toplevel} let f = (fun a -> fun b -> fun c -> a + b + c) let g = (fun a b c -> a + b + c);; \end{caml_example} An optional type constraint @typexpr@ can be added before "->" to enforce the type of the result to be compatible with the constraint @typexpr@: \begin{center} @"fun" parameter_1 \ldots parameter_n ":" typexpr "->" expr@ \end{center} is equivalent to \begin{center} @"fun" parameter_1 "->" \ldots "fun" parameter_n "->" % (expr ":" typexpr )@ \end{center} Beware of the small syntactic difference between a type constraint on the last parameter \begin{center} @"fun" parameter_1 \ldots (parameter_n":"typexpr)"->" expr @ \end{center} and one on the result \begin{center} @"fun" parameter_1 \ldots parameter_n":" typexpr "->" expr @ \end{center} \begin{caml_example}{toplevel} let eq = fun (a : int) (b : int) -> a = b let eq2 = fun a b : bool -> a = b let eq3 = fun (a : int) (b : int) : bool -> a = b;; \end{caml_example} The parameter patterns @"~"lab@ and @"~("lab [":" typ]")"@ are shorthands for respectively @"~"lab":"lab@ and @"~"lab":("lab [":" typ]")"@, and similarly for their optional counterparts. \begin{caml_example}{toplevel} let bool_map ~cmp:(cmp : int -> int -> bool) l = List.map cmp l let bool_map' ~(cmp : int -> int -> bool) l = List.map cmp l;; \end{caml_example} A function of the form @"fun" "?" lab ":(" pattern '=' expr_0 ')' '->' expr@ is equivalent to \begin{center} @"fun" "?" lab ":" ident '->' "let" pattern '=' "match" ident "with" "Some" ident "->" ident '|' "None" '->' expr_0 "in" expr@ \end{center} where @ident@ is a fresh variable, except that it is unspecified when @expr_0@ is evaluated. \begin{caml_example}{toplevel} let open_file_for_input ?binary filename = match binary with | Some true -> open_in_bin filename | Some false | None -> open_in filename let open_file_for_input' ?(binary=false) filename = if binary then open_in_bin filename else open_in filename;; \end{caml_example} After these two transformations, expressions are of the form \begin{center} @"fun" [label_1] pattern_1 "->" \ldots "fun" [label_n] pattern_n "->" expr@ \end{center} If we ignore labels, which will only be meaningful at function application, this is equivalent to \begin{center} @"function" pattern_1 "->" \ldots "function" pattern_n "->" expr@ \end{center} That is, the @"fun"@ expression above evaluates to a curried function with \var{n} arguments: after applying this function $n$ times to the values @@v@_1 \ldots @v@_n@, the values will be matched in parallel against the patterns @pattern_1 \ldots pattern_n@. If the matching succeeds, the function returns the value of @expr@ in an environment enriched by the bindings performed during the matchings. If the matching fails, the exception "Match_failure" is raised. \subsubsection*{sss:guards-in-pattern-matchings}{Guards in pattern-matchings} \ikwd{when\@\texttt{when}} The cases of a pattern matching (in the @"function"@, @"match"@ and @"try"@ constructs) can include guard expressions, which are arbitrary boolean expressions that must evaluate to "true" for the match case to be selected. Guards occur just before the @"->"@ token and are introduced by the @"when"@ keyword: $$\begin{array}{rlll} \token{function} & \nt{pattern}_1 \; [\token{when} \; \nt{cond}_1] & \token{->} & \nt{expr}_1 \\ \token{|} & \ldots \\ \token{|} & \nt{pattern}_n \; [\token{when} \; \nt{cond}_n] & \token{->} & \nt{expr}_n \end{array}$$ Matching proceeds as described before, except that if the value matches some pattern @pattern_i@ which has a guard @@cond@_i@, then the expression @@cond@_i@ is evaluated (in an environment enriched by the bindings performed during matching). If @@cond@_i@ evaluates to "true", then @expr_i@ is evaluated and its value returned as the result of the matching, as usual. But if @@cond@_i@ evaluates to "false", the matching is resumed against the patterns following @pattern_i@. \begin{caml_example}{toplevel} let rec repeat f = function | 0 -> () | n when n > 0 -> f (); repeat f (n - 1) | _ -> raise (Invalid_argument "repeat");; \end{caml_example} \subsubsection*{sss:expr-localdef}{Local definitions} \ikwd{let\@\texttt{let}} The @"let"@ and @"let" "rec"@ constructs bind value names locally. The construct \begin{center} @"let" pattern_1 "=" expr_1 "and" \ldots "and" pattern_n "=" expr_n "in" expr@ \end{center} evaluates @expr_1 \ldots expr_n@ in some unspecified order and matches their values against the patterns @pattern_1 \ldots pattern_n@. If the matchings succeed, @expr@ is evaluated in the environment enriched by the bindings performed during matching, and the value of @expr@ is returned as the value of the whole @"let"@ expression. If one of the matchings fails, the exception "Match_failure" is raised. % \index{Matchfailure\@\verb`Match_failure`} \begin{caml_example}{toplevel} let v = let x = 1 in [x; x; x] let v' = let a, b = (1, 2) in a + b let v'' = let a = 1 and b = 2 in a + b;; \end{caml_example} An alternate syntax is provided to bind variables to functional values: instead of writing \begin{center} @"let" ident "=" "fun" parameter_1 \ldots parameter_m "->" expr@ \end{center} in a @"let"@ expression, one may instead write \begin{center} @"let" ident parameter_1 \ldots parameter_m "=" expr@ \end{center} \begin{caml_example}{toplevel} let f = fun x -> fun y -> fun z -> x + y + z let f' = fun x y z -> x + y + z let f'' x y z = x + y + z;; \end{caml_example} \noindent Recursive definitions of names are introduced by @"let" "rec"@: \begin{center} @"let" "rec" pattern_1 "=" expr_1 "and" \ldots "and" pattern_n "=" expr_n "in" expr@ \end{center} The only difference with the @"let"@ construct described above is that the bindings of names to values performed by the pattern-matching are considered already performed when the expressions @expr_1@ to @expr_n@ are evaluated. That is, the expressions @expr_1@ to @expr_n@ can reference identifiers that are bound by one of the patterns @pattern_1, \ldots, pattern_n@, and expect them to have the same value as in @expr@, the body of the @"let" "rec"@ construct. \begin{caml_example}{toplevel} let rec even = function 0 -> true | n -> odd (n - 1) and odd = function 0 -> false | n -> even (n - 1) in even 1000;; \end{caml_example} The recursive definition is guaranteed to behave as described above if the expressions @expr_1@ to @expr_n@ are function definitions (@"fun" \ldots@ or @"function" \ldots@), and the patterns @pattern_1 \ldots pattern_n@ are just value names, as in: \begin{center} @"let" "rec" name_1 "=" "fun" \ldots "and" \ldots "and" name_n "=" "fun" \ldots "in" expr@ \end{center} This defines @name_1 \ldots name_n@ as mutually recursive functions local to @expr@. The behavior of other forms of @"let" "rec"@ definitions is implementation-dependent. The current implementation also supports a certain class of recursive definitions of non-functional values, as explained in section~\ref{s:letrecvalues}. \subsubsection{sss:expr-let-exception}{Local exceptions} (Introduced in OCaml 4.04) It is possible to define local exceptions in expressions: @ "let" exception constr-decl "in" expr @ . \begin{caml_example}{toplevel} let map_empty_on_negative f l = let exception Negative in let aux x = if x < 0 then raise Negative else f x in try List.map aux l with Negative -> [];; \end{caml_example} The syntactic scope of the exception constructor is the inner expression, but nothing prevents exception values created with this constructor from escaping this scope. Two executions of the definition above result in two incompatible exception constructors (as for any exception definition). For instance: \begin{caml_example}{toplevel} let gen () = let exception A in A let () = assert(gen () = gen ());; \end{caml_example} \subsubsection{sss:expr-explicit-polytype}{Explicit polymorphic type annotations} (Introduced in OCaml 3.12) Polymorphic type annotations in @"let"@-definitions behave in a way similar to polymorphic methods: \begin{center} @"let" pattern_1 ":" typ_1 \ldots typ_n "." typexpr "=" expr @ \end{center} These annotations explicitly require the defined value to be polymorphic, and allow one to use this polymorphism in recursive occurrences (when using @"let" "rec"@). Note however that this is a normal polymorphic type, unifiable with any instance of itself. \subsection{ss:expr-control}{Control structures} \subsubsection*{sss:expr-sequence}{Sequence} The expression @expr_1 ";" expr_2@ evaluates @expr_1@ first, then @expr_2@, and returns the value of @expr_2@. \begin{caml_example}{toplevel} let print_pair (a, b) = print_string "("; print_string (string_of_int a); print_string ","; print_string (string_of_int b); print_endline ")";; \end{caml_example} \subsubsection*{sss:expr-conditional}{Conditional} \ikwd{if\@\texttt{if}} The expression @"if" expr_1 "then" expr_2 "else" expr_3@ evaluates to the value of @expr_2@ if @expr_1@ evaluates to the boolean @"true"@, and to the value of @expr_3@ if @expr_1@ evaluates to the boolean @"false"@. \begin{caml_example}{toplevel} let rec factorial x = if x <= 1 then 1 else x * factorial (x - 1);; \end{caml_example} The @"else" expr_3@ part can be omitted, in which case it defaults to @"else" "()"@. \begin{caml_example}{toplevel} let debug = ref false let log msg = if !debug then prerr_endline msg;; \end{caml_example} \subsubsection*{sss:expr-case}{Case expression}\ikwd{match\@\texttt{match}} The expression $$\begin{array}{rlll} \token{match} & \textsl{expr} \\ \token{with} & \textsl{pattern}_1 & \token{->} & \textsl{expr}_1 \\ \token{|} & \ldots \\ \token{|} & \textsl{pattern}_n & \token{->} & \textsl{expr}_n \end{array}$$ matches the value of @expr@ against the patterns @pattern_1@ to @pattern_n@. If the matching against @pattern_i@ succeeds, the associated expression @expr_i@ is evaluated, and its value becomes the value of the whole @'match'@ expression. The evaluation of @expr_i@ takes place in an environment enriched by the bindings performed during matching. If several patterns match the value of @expr@, the one that occurs first in the @'match'@ expression is selected. \begin{caml_example}{toplevel} let rec sum l = match l with | [] -> 0 | h :: t -> h + sum t;; \end{caml_example} If none of the patterns match the value of @expr@, the exception "Match_failure" is raised. % \index{Matchfailure\@\verb`Match_failure`} \begin{caml_example}{toplevel} let unoption o = match o with | Some x -> x [@@expect warning 8];; let l = List.map unoption [Some 1; Some 10; None; Some 2];; \end{caml_example} \subsubsection*{sss:expr-boolean-operators}{Boolean operators} The expression @expr_1 '&&' expr_2@ evaluates to @'true'@ if both @expr_1@ and @expr_2@ evaluate to @'true'@; otherwise, it evaluates to @'false'@. The first component, @expr_1@, is evaluated first. The second component, @expr_2@, is not evaluated if the first component evaluates to @'false'@. Hence, the expression @expr_1 '&&' expr_2@ behaves exactly as \begin{center} @'if' expr_1 'then' expr_2 'else' 'false'@. \end{center} The expression @expr_1 '||' expr_2@ evaluates to @'true'@ if one of the expressions @expr_1@ and @expr_2@ evaluates to @'true'@; otherwise, it evaluates to @'false'@. The first component, @expr_1@, is evaluated first. The second component, @expr_2@, is not evaluated if the first component evaluates to @'true'@. Hence, the expression @expr_1 '||' expr_2@ behaves exactly as \begin{center} @'if' expr_1 'then' 'true' 'else' expr_2@. \end{center} \ikwd{or\@\texttt{or}} The boolean operators @'&'@ and @'or'@ are deprecated synonyms for (respectively) @'&&'@ and @'||'@. \begin{caml_example}{toplevel} let xor a b = (a || b) && not (a && b);; \end{caml_example} \subsubsection*{sss:expr-loops}{Loops} \ikwd{while\@\texttt{while}} The expression @'while' expr_1 'do' expr_2 'done'@ repeatedly evaluates @expr_2@ while @expr_1@ evaluates to @'true'@. The loop condition @expr_1@ is evaluated and tested at the beginning of each iteration. The whole @'while' \ldots 'done'@ expression evaluates to the unit value @'()'@. \begin{caml_example}{toplevel} let chars_of_string s = let i = ref 0 in let chars = ref [] in while !i < String.length s do chars := s.[!i] :: !chars; i := !i + 1 done; List.rev !chars;; \end{caml_example} As a special case, @'while' 'true' 'do' expr 'done'@ is given a polymorphic type, allowing it to be used in place of any expression (for example as a branch of any pattern-matching). \ikwd{for\@\texttt{for}} The expression @'for' name '=' expr_1 'to' expr_2 'do' expr_3 'done'@ first evaluates the expressions @expr_1@ and @expr_2@ (the boundaries) into integer values \var{n} and \var{p}. Then, the loop body @expr_3@ is repeatedly evaluated in an environment where @name@ is successively bound to the values $n$, $n+1$, \ldots, $p-1$, $p$. The loop body is never evaluated if $n > p$. \begin{caml_example}{toplevel} let chars_of_string s = let l = ref [] in for p = 0 to String.length s - 1 do l := s.[p] :: !l done; List.rev !l;; \end{caml_example} The expression @'for' name '=' expr_1 'downto' expr_2 'do' expr_3 'done'@ evaluates similarly, except that @name@ is successively bound to the values $n$, $n-1$, \ldots, $p+1$, $p$. The loop body is never evaluated if $n < p$. \begin{caml_example}{toplevel} let chars_of_string s = let l = ref [] in for p = String.length s - 1 downto 0 do l := s.[p] :: !l done; !l;; \end{caml_example} In both cases, the whole @'for'@ expression evaluates to the unit value @'()'@. \subsubsection*{sss:expr-exception-handling}{Exception handling} \ikwd{try\@\texttt{try}} The expression $$\begin{array}{rlll} \token{try~} & \textsl{expr} \\ \token{with} & \textsl{pattern}_1 & \token{->} & \textsl{expr}_1 \\ \token{|} & \ldots \\ \token{|} & \textsl{pattern}_n & \token{->} & \textsl{expr}_n \end{array}$$ evaluates the expression @expr@ and returns its value if the evaluation of @expr@ does not raise any exception. If the evaluation of @expr@ raises an exception, the exception value is matched against the patterns @pattern_1@ to @pattern_n@. If the matching against @pattern_i@ succeeds, the associated expression @expr_i@ is evaluated, and its value becomes the value of the whole @'try'@ expression. The evaluation of @expr_i@ takes place in an environment enriched by the bindings performed during matching. If several patterns match the value of @expr@, the one that occurs first in the @'try'@ expression is selected. If none of the patterns matches the value of @expr@, the exception value is raised again, thereby transparently ``passing through'' the @'try'@ construct. \begin{caml_example}{toplevel} let find_opt p l = try Some (List.find p l) with Not_found -> None;; \end{caml_example} \subsection{ss:expr-ops-on-data}{Operations on data structures} \subsubsection*{sss:expr-products}{Products} The expression @expr_1 ',' \ldots ',' expr_n@ evaluates to the \var{n}-tuple of the values of expressions @expr_1@ to @expr_n@. The evaluation order of the subexpressions is not specified. \begin{caml_example}{toplevel} (1 + 2 * 3, (1 + 2) * 3, 1 + (2 * 3));; \end{caml_example} \subsubsection*{sss:expr-variants}{Variants} The expression @constr expr@ evaluates to the unary variant value whose constructor is @constr@, and whose argument is the value of @expr@. Similarly, the expression @constr '(' expr_1 ',' \ldots ',' expr_n ')'@ evaluates to the n-ary variant value whose constructor is @constr@ and whose arguments are the values of @expr_1, \ldots, expr_n@. The expression @constr '('expr_1, \ldots, expr_n')'@ evaluates to the variant value whose constructor is @constr@, and whose arguments are the values of @expr_1 \ldots expr_n@. \begin{caml_example}{toplevel} type t = Var of string | Not of t | And of t * t | Or of t * t let test = And (Var "x", Not (Or (Var "y", Var "z")));; \end{caml_example} For lists, some syntactic sugar is provided. The expression @expr_1 '::' expr_2@ stands for the constructor @'(' '::' ')' @ applied to the arguments @'(' expr_1 ',' expr_2 ')'@, and therefore evaluates to the list whose head is the value of @expr_1@ and whose tail is the value of @expr_2@. The expression @'[' expr_1 ';' \ldots ';' expr_n ']'@ is equivalent to @expr_1 '::' \ldots '::' expr_n '::' '[]'@, and therefore evaluates to the list whose elements are the values of @expr_1@ to @expr_n@. \begin{caml_example}{toplevel} 0 :: [1; 2; 3] = 0 :: 1 :: 2 :: 3 :: [];; \end{caml_example} \subsubsection*{sss:expr-polyvars}{Polymorphic variants} The expression @"`"tag-name expr@ evaluates to the polymorphic variant value whose tag is @tag-name@, and whose argument is the value of @expr@. \begin{caml_example}{toplevel} let with_counter x = `V (x, ref 0);; \end{caml_example} \subsubsection*{sss:expr-records}{Records} The expression @'{' field_1 ['=' expr_1] ';' \ldots ';' field_n ['=' expr_n ']}'@ evaluates to the record value $\{ field_1 = v_1; \ldots; field_n = v_n \}$ where $v_i$ is the value of @expr_i@ for \fromoneto{i}{n}. A single identifier @field_k@ stands for @field_k '=' field_k@, and a qualified identifier @module-path '.' field_k@ stands for @module-path '.' field_k '=' field_k@. The fields @field_1@ to @field_n@ must all belong to the same record type; each field of this record type must appear exactly once in the record expression, though they can appear in any order. The order in which @expr_1@ to @expr_n@ are evaluated is not specified. Optional type constraints can be added after each field @'{' field_1 ':' typexpr_1 '=' expr_1 ';'% \ldots ';' field_n ':' typexpr_n '=' expr_n '}'@ to force the type of @field_k@ to be compatible with @typexpr_k@. \begin{caml_example}{toplevel} type t = {house_no : int; street : string; town : string; postcode : string} let address x = Printf.sprintf "The occupier\n%i %s\n%s\n%s" x.house_no x.street x.town x.postcode;; \end{caml_example} The expression @"{" expr "with" field_1 ["=" expr_1] ";" \ldots ";" field_n ["=" expr_n] "}"@ builds a fresh record with fields @field_1 \ldots field_n@ equal to @expr_1 \ldots expr_n@, and all other fields having the same value as in the record @expr@. In other terms, it returns a shallow copy of the record @expr@, except for the fields @field_1 \ldots field_n@, which are initialized to @expr_1 \ldots expr_n@. As previously, single identifier @field_k@ stands for @field_k '=' field_k@, a qualified identifier @module-path '.' field_k@ stands for @module-path '.' field_k '=' field_k@ and it is possible to add an optional type constraint on each field being updated with @"{" expr "with" field_1 ':' typexpr_1 "=" expr_1 ";" % \ldots ";" field_n ':' typexpr_n "=" expr_n "}"@. \begin{caml_example}{toplevel} type t = {house_no : int; street : string; town : string; postcode : string} let uppercase_town address = {address with town = String.uppercase_ascii address.town};; \end{caml_example} The expression @expr_1 '.' field@ evaluates @expr_1@ to a record value, and returns the value associated to @field@ in this record value. The expression @expr_1 '.' field '<-' expr_2@ evaluates @expr_1@ to a record value, which is then modified in-place by replacing the value associated to @field@ in this record by the value of @expr_2@. This operation is permitted only if @field@ has been declared @'mutable'@ in the definition of the record type. The whole expression @expr_1 '.' field '<-' expr_2@ evaluates to the unit value @'()'@. \begin{caml_example}{toplevel} type t = {mutable upper : int; mutable lower : int; mutable other : int} let stats = {upper = 0; lower = 0; other = 0} let collect = String.iter (function | 'A'..'Z' -> stats.upper <- stats.upper + 1 | 'a'..'z' -> stats.lower <- stats.lower + 1 | _ -> stats.other <- stats.other + 1);; \end{caml_example} \subsubsection*{sss:expr-arrays}{Arrays} The expression @'[|' expr_1 ';' \ldots ';' expr_n '|]'@ evaluates to a \var{n}-element array, whose elements are initialized with the values of @expr_1@ to @expr_n@ respectively. The order in which these expressions are evaluated is unspecified. The expression @expr_1 '.(' expr_2 ')'@ returns the value of element number @expr_2@ in the array denoted by @expr_1@. The first element has number 0; the last element has number $n-1$, where \var{n} is the size of the array. The exception "Invalid_argument" is raised if the access is out of bounds. The expression @expr_1 '.(' expr_2 ')' '<-' expr_3@ modifies in-place the array denoted by @expr_1@, replacing element number @expr_2@ by the value of @expr_3@. The exception "Invalid_argument" is raised if the access is out of bounds. The value of the whole expression is @'()'@. \begin{caml_example}{toplevel} let scale arr n = for x = 0 to Array.length arr - 1 do arr.(x) <- arr.(x) * n done let x = [|1; 10; 100|] let _ = scale x 2;; \end{caml_example} \subsubsection*{sss:expr-strings}{Strings} The expression @expr_1 '.[' expr_2 ']'@ returns the value of character number @expr_2@ in the string denoted by @expr_1@. The first character has number 0; the last character has number $n-1$, where \var{n} is the length of the string. The exception "Invalid_argument" is raised if the access is out of bounds. \begin{caml_example}{toplevel} let iter f s = for x = 0 to String.length s - 1 do f s.[x] done;; \end{caml_example} The expression @expr_1 '.[' expr_2 ']' '<-' expr_3@ modifies in-place the string denoted by @expr_1@, replacing character number @expr_2@ by the value of @expr_3@. The exception "Invalid_argument" is raised if the access is out of bounds. The value of the whole expression is @'()'@. {\bf Note:} this possibility is offered only for backward compatibility with older versions of OCaml and will be removed in a future version. New code should use byte sequences and the "Bytes.set" function. \subsection{ss:expr-operators}{Operators} \ikwd{mod\@\texttt{mod}} \ikwd{land\@\texttt{land}} \ikwd{lor\@\texttt{lor}} \ikwd{lxor\@\texttt{lxor}} \ikwd{lsl\@\texttt{lsl}} \ikwd{lsr\@\texttt{lsr}} \ikwd{asr\@\texttt{asr}} Symbols from the class @infix-symbol@, as well as the keywords @"*"@, @"+"@, @"-"@, @'-.'@, @"="@, @"!="@, @"<"@, @">"@, @"or"@, @"||"@, @"&"@, @"&&"@, @":="@, @"mod"@, @"land"@, @"lor"@, @"lxor"@, @"lsl"@, @"lsr"@, and @"asr"@ can appear in infix position (between two expressions). Symbols from the class @prefix-symbol@, as well as the keywords @"-"@ and @"-."@ can appear in prefix position (in front of an expression). \begin{caml_example}{toplevel} (( * ), ( := ), ( || ));; \end{caml_example} Infix and prefix symbols do not have a fixed meaning: they are simply interpreted as applications of functions bound to the names corresponding to the symbols. The expression @prefix-symbol expr@ is interpreted as the application @'(' prefix-symbol ')' expr@. Similarly, the expression @expr_1 infix-symbol expr_2@ is interpreted as the application @'(' infix-symbol ')' expr_1 expr_2@. The table below lists the symbols defined in the initial environment and their initial meaning. (See the description of the core library module "Stdlib" in chapter~\ref{c:corelib} for more details). Their meaning may be changed at any time using @"let" "(" infix-op ")" name_1 name_2 "=" \ldots@ \begin{caml_example}{toplevel} let ( + ), ( - ), ( * ), ( / ) = Int64.(add, sub, mul, div);; \end{caml_example} Note: the operators @'&&'@, @'||'@, and @'~-'@ are handled specially and it is not advisable to change their meaning. The keywords @'-'@ and @'-.'@ can appear both as infix and prefix operators. When they appear as prefix operators, they are interpreted respectively as the functions @'(~-)'@ and @'(~-.)'@. %% Conversely, a regular function identifier can also be used as an infix %% operator by enclosing it in backquotes: @expr_1 '`' ident '`' expr_2@ %% is interpreted as the application @ident expr_1 expr_2@. \ikwd{mod\@\texttt{mod}}% \ikwd{land\@\texttt{land}}% \ikwd{lor\@\texttt{lor}}% \ikwd{lxor\@\texttt{lxor}}% \ikwd{lsl\@\texttt{lsl}}% \ikwd{lsr\@\texttt{lsr}}% \ikwd{asr\@\texttt{asr}}% \begin{tableau}{|l|p{12cm}|}{Operator}{Initial meaning} \entree{"+"}{Integer addition.} \entree{"-" (infix)}{Integer subtraction.} \entree{"~- -" (prefix)}{Integer negation.} \entree{"*"}{Integer multiplication.} \entree{"/"}{Integer division. Raise "Division_by_zero" if second argument is zero.} \entree{"mod"}{Integer modulus. Raise "Division_by_zero" if second argument is zero.} \entree{"land"}{Bitwise logical ``and'' on integers.} \entree{"lor"}{Bitwise logical ``or'' on integers.} \entree{"lxor"}{Bitwise logical ``exclusive or'' on integers.} \entree{"lsl"}{Bitwise logical shift left on integers.} \entree{"lsr"}{Bitwise logical shift right on integers.} \entree{"asr"}{Bitwise arithmetic shift right on integers.} \entree{"+."}{Floating-point addition.} \entree{"-." (infix)}{Floating-point subtraction.} \entree{"~-. -." (prefix)}{Floating-point negation.} \entree{"*."}{Floating-point multiplication.} \entree{"/."}{Floating-point division.} \entree{"**"}{Floating-point exponentiation.} \entree{{\tt\char64} }{List concatenation.} \entree{"^" }{String concatenation.} \entree{"!" }{Dereferencing (return the current contents of a reference).} \entree{":="}{Reference assignment (update the reference given as first argument with the value of the second argument).} \entree{"=" }{Structural equality test.} \entree{"<>" }{Structural inequality test.} \entree{"==" }{Physical equality test.} \entree{"!=" }{Physical inequality test.} \entree{"<" }{Test ``less than''.} \entree{"<=" }{Test ``less than or equal''.} \entree{">" }{Test ``greater than''.} \entree{">=" }{Test ``greater than or equal''.} \entree{"&& &"}{Boolean conjunction.} \entree{"|| or"}{Boolean disjunction.} \end{tableau} \subsection{ss:expr-obj}{Objects} \label{s:objects} \subsubsection*{sss:expr-obj-creation}{Object creation} \ikwd{new\@\texttt{new}} When @class-path@ evaluates to a class body, @'new' class-path@ evaluates to a new object containing the instance variables and methods of this class. \begin{caml_example}{toplevel} class of_list (lst : int list) = object val mutable l = lst method next = match l with | [] -> raise (Failure "empty list"); | h::t -> l <- t; h end let a = new of_list [1; 1; 2; 3; 5; 8; 13] let b = new of_list;; \end{caml_example} When @class-path@ evaluates to a class function, @'new' class-path@ evaluates to a function expecting the same number of arguments and returning a new object of this class. \subsubsection*{sss:expr-obj-immediate}{Immediate object creation} \ikwd{object\@\texttt{object}} Creating directly an object through the @'object' class-body 'end'@ construct is operationally equivalent to defining locally a @'class' class-name '=' 'object' class-body 'end'@ ---see sections \ref{sss:class-body} and following for the syntax of @class-body@--- and immediately creating a single object from it by @'new' class-name@. \begin{caml_example}{toplevel} let o = object val secret = 99 val password = "unlock" method get guess = if guess <> password then None else Some secret end;; \end{caml_example} The typing of immediate objects is slightly different from explicitly defining a class in two respects. First, the inferred object type may contain free type variables. Second, since the class body of an immediate object will never be extended, its self type can be unified with a closed object type. \subsubsection*{sss:expr-method}{Method invocation} The expression @expr '#' method-name@ invokes the method @method-name@ of the object denoted by @expr@. \begin{caml_example}{toplevel} class of_list (lst : int list) = object val mutable l = lst method next = match l with | [] -> raise (Failure "empty list"); | h::t -> l <- t; h end let a = new of_list [1; 1; 2; 3; 5; 8; 13] let third = ignore a#next; ignore a#next; a#next;; \end{caml_example} If @method-name@ is a polymorphic method, its type should be known at the invocation site. This is true for instance if @expr@ is the name of a fresh object (@'let' ident = 'new' class-path \dots @) or if there is a type constraint. Principality of the derivation can be checked in the "-principal" mode. \subsubsection*{sss:expr-obj-variables}{Accessing and modifying instance variables} The instance variables of a class are visible only in the body of the methods defined in the same class or a class that inherits from the class defining the instance variables. The expression @inst-var-name@ evaluates to the value of the given instance variable. The expression @inst-var-name '<-' expr@ assigns the value of @expr@ to the instance variable @inst-var-name@, which must be mutable. The whole expression @inst-var-name '<-' expr@ evaluates to @"()"@. \begin{caml_example}{toplevel} class of_list (lst : int list) = object val mutable l = lst method next = match l with (* access instance variable *) | [] -> raise (Failure "empty list"); | h::t -> l <- t; h (* modify instance variable *) end;; \end{caml_example} \subsubsection*{sss:expr-obj-duplication}{Object duplication} An object can be duplicated using the library function "Oo.copy" (see module \stdmoduleref{Oo}). Inside a method, the expression @ '{<' [inst-var-name ['=' expr] { ';' inst-var-name ['=' expr] }] '>}'@ returns a copy of self with the given instance variables replaced by the values of the associated expressions. A single instance variable name @id@ stands for @id '=' id@. Other instance variables have the same value in the returned object as in self. \begin{caml_example}{toplevel} let o = object val secret = 99 val password = "unlock" method get guess = if guess <> password then None else Some secret method with_new_secret s = {< secret = s >} end;; \end{caml_example} \subsection{ss:expr-coercions}{Coercions} Expressions whose type contains object or polymorphic variant types can be explicitly coerced (weakened) to a supertype. % The expression @'('expr ':>' typexpr')'@ coerces the expression @expr@ to type @typexpr@. % The expression @'('expr ':' typexpr_1 ':>' typexpr_2')'@ coerces the expression @expr@ from type @typexpr_1@ to type @typexpr_2@. The former operator will sometimes fail to coerce an expression @expr@ from a type @typ_1@ to a type @typ_2@ even if type @typ_1@ is a subtype of type @typ_2@: in the current implementation it only expands two levels of type abbreviations containing objects and/or polymorphic variants, keeping only recursion when it is explicit in the class type (for objects). As an exception to the above algorithm, if both the inferred type of @expr@ and @typ@ are ground ({\em i.e.} do not contain type variables), the former operator behaves as the latter one, taking the inferred type of @expr@ as @typ_1@. In case of failure with the former operator, the latter one should be used. It is only possible to coerce an expression @expr@ from type @typ_1@ to type @typ_2@, if the type of @expr@ is an instance of @typ_1@ (like for a type annotation), and @typ_1@ is a subtype of @typ_2@. The type of the coerced expression is an instance of @typ_2@. If the types contain variables, they may be instantiated by the subtyping algorithm, but this is only done after determining whether @typ_1@ is a potential subtype of @typ_2@. This means that typing may fail during this latter unification step, even if some instance of @typ_1@ is a subtype of some instance of @typ_2@. % In the following paragraphs we describe the subtyping relation used. \subsubsection*{sss:expr-obj-types}{Object types} A fixed object type admits as subtype any object type that includes all its methods. The types of the methods shall be subtypes of those in the supertype. Namely, \begin{center} @ '<' met_1 ':' typ_1 ';' \dots ';' met_n ':' typ_n '>' @ \end{center} is a supertype of \begin{center} @ '<' met_1 ':' typ@$'_1$@ ';' \dots ';' met_n ':' typ@$'_n$@ ';' met@$_{n+1}$@ ':' typ@$'_{n+1}$@ ';' \dots ';' met@$_{n+m}$@ ':' typ@$'_{n+m}$@ ~[';' '..'] '>' @ \end{center} which may contain an ellipsis ".." if every @typ_i@ is a supertype of the corresponding @typ@$'_i$. A monomorphic method type can be a supertype of a polymorphic method type. Namely, if @typ@ is an instance of @typ@$'$, then @ "'"@a@_1 \dots "'"@a@_n '.' typ@$'$ is a subtype of @typ@. Inside a class definition, newly defined types are not available for subtyping, as the type abbreviations are not yet completely defined. There is an exception for coercing @@self@@ to the (exact) type of its class: this is allowed if the type of @@self@@ does not appear in a contravariant position in the class type, {\em i.e.} if there are no binary methods. \subsubsection*{sss:expr-polyvar-types}{Polymorphic variant types} A polymorphic variant type @typ@ is a subtype of another polymorphic variant type @typ@$'$ if the upper bound of @typ@ ({\em i.e.} the maximum set of constructors that may appear in an instance of @typ@) is included in the lower bound of @typ@$'$, and the types of arguments for the constructors of @typ@ are subtypes of those in @typ@$'$. Namely, \begin{center} @ "["["<"] "`"C_1 "of" typ_1 "|" \dots "|" "`"C_n "of" typ_n "]" @ \end{center} which may be a shrinkable type, is a subtype of \begin{center} @ "["[">"] "`"C_1 "of" typ@$'_1$@ "|" \dots "|" "`"C_n "of" typ@$'_n$@ "|" "`"C@$_{n+1}$@ "of" typ@$'_{n+1}$@ "|" \dots "|" "`"C@$_{n+m}$@ "of" typ@$'_{n+m}$@ "]" @ \end{center} which may be an extensible type, if every @typ_i@ is a subtype of @typ@$'_i$. \subsubsection*{sss:expr-variance}{Variance} Other types do not introduce new subtyping, but they may propagate the subtyping of their arguments. For instance, @typ_1 "*" typ_2@ is a subtype of @typ@$'_1$@ "*" typ@$'_2$ when @typ_1@ and @typ_2@ are respectively subtypes of @typ@$'_1$ and @typ@$'_2$. For function types, the relation is more subtle: @typ_1 "->" typ_2@ is a subtype of @typ@$'_1$@~"->" typ@$'_2$ if @typ_1@ is a supertype of @typ@$'_1$ and @typ_2@ is a subtype of @typ@$'_2$. For this reason, function types are covariant in their second argument (like tuples), but contravariant in their first argument. Mutable types, like "array" or "ref" are neither covariant nor contravariant, they are nonvariant, that is they do not propagate subtyping. For user-defined types, the variance is automatically inferred: a parameter is covariant if it has only covariant occurrences, contravariant if it has only contravariant occurrences, variance-free if it has no occurrences, and nonvariant otherwise. A variance-free parameter may change freely through subtyping, it does not have to be a subtype or a supertype. % For abstract and private types, the variance must be given explicitly (see section~\ref{ss:typedefs}), otherwise the default is nonvariant. This is also the case for constrained arguments in type definitions. \subsection{ss:expr-other}{Other} \subsubsection*{sss:expr-assertion}{Assertion checking} \ikwd{assert\@\texttt{assert}} OCaml supports the @"assert"@ construct to check debugging assertions. The expression @"assert" expr@ evaluates the expression @expr@ and returns @"()"@ if @expr@ evaluates to @"true"@. If it evaluates to @"false"@ the exception "Assert_failure" is raised with the source file name and the location of @expr@ as arguments. Assertion checking can be turned off with the "-noassert" compiler option. In this case, @expr@ is not evaluated at all. \begin{caml_example}{toplevel} let f a b c = assert (a <= b && b <= c); (b -. a) /. (c -. b);; \end{caml_example} As a special case, @"assert false"@ is reduced to @'raise' '('@"Assert_failure ..."@')'@, which gives it a polymorphic type. This means that it can be used in place of any expression (for example as a branch of any pattern-matching). It also means that the @"assert false"@ ``assertions'' cannot be turned off by the "-noassert" option. % \index{Assertfailure\@\verb`Assert_failure`} \begin{caml_example}{toplevel} let min_known_nonempty = function | [] -> assert false | l -> List.hd (List.sort compare l);; \end{caml_example} \subsubsection*{sss:expr-lazy}{Lazy expressions} \ikwd{lazy\@\texttt{lazy}} The expression @"lazy" expr@ returns a value \var{v} of type "Lazy.t" that encapsulates the computation of @expr@. The argument @expr@ is not evaluated at this point in the program. Instead, its evaluation will be performed the first time the function "Lazy.force" is applied to the value \var{v}, returning the actual value of @expr@. Subsequent applications of "Lazy.force" to \var{v} do not evaluate @expr@ again. Applications of "Lazy.force" may be implicit through pattern matching (see~\ref{sss:pat-lazy}). \begin{caml_example}{toplevel} let lazy_greeter = lazy (print_string "Hello, World!\n");; Lazy.force lazy_greeter;; \end{caml_example} \subsubsection*{sss:expr-local-modules}{Local modules} \ikwd{let\@\texttt{let}} \ikwd{module\@\texttt{module}} The expression @"let" "module" module-name "=" module-expr "in" expr@ locally binds the module expression @module-expr@ to the identifier @module-name@ during the evaluation of the expression @expr@. It then returns the value of @expr@. For example: \begin{caml_example}{toplevel} let remove_duplicates comparison_fun string_list = let module StringSet = Set.Make(struct type t = string let compare = comparison_fun end) in StringSet.elements (List.fold_right StringSet.add string_list StringSet.empty);; \end{caml_example} \subsubsection*{sss:local-opens}{Local opens} \ikwd{let\@\texttt{let}} \ikwd{module\@\texttt{open}} The expressions @"let" "open" module-path "in" expr@ and @module-path'.('expr')'@ are strictly equivalent. These constructions locally open the module referred to by the module path @module-path@ in the respective scope of the expression @expr@. \begin{caml_example}{toplevel} let map_3d_matrix f m = let open Array in map (map (map f)) m let map_3d_matrix' f = Array.(map (map (map f)));; \end{caml_example} When the body of a local open expression is delimited by @'[' ']'@, @'[|' '|]'@, or @'{' '}'@, the parentheses can be omitted. For expression, parentheses can also be omitted for @'{<' '>}'@. For example, @module-path'.['expr']'@ is equivalent to @module-path'.(['expr'])'@, and @module-path'.[|' expr '|]'@ is equivalent to @module-path'.([|' expr '|])'@. \begin{caml_example}{toplevel} let vector = Random.[|int 255; int 255; int 255; int 255|];; \end{caml_example} %% \newpage