(**************************************************************************) (* *) (* OCaml *) (* *) (* Jean-Christophe Filliâtre *) (* *) (* Copyright 2023 CNRS *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Priority queues over ordered elements. We choose to have polymorphic elements here, so that we can later derive both polymorphic and monomorphic priority queues from it. *) module type OrderedPolyType = sig type 'a t val compare : 'a t -> 'b t -> int end module MakeMinPoly(E: OrderedPolyType) = struct type 'a elt = 'a E.t (* Our priority queues are implemented using the standard "min heap" data structure, a dynamic array representing a binary tree. *) type 'a t = 'a E.t Dynarray.t let create = Dynarray.create let length = Dynarray.length let is_empty = Dynarray.is_empty let clear = Dynarray.clear (* The node at index [i] has children nodes at indices [2 * i + 1] and [2 * i + 2] -- if they are valid indices in the dynarray. *) let left_child i = 2 * i + 1 let right_child i = 2 * i + 2 let parent_node i = (i - 1) / 2 (* We say that a heap respects the "heap ordering" if the value of each node is no greater than the value of its children. The algorithm manipulates arrays that respect the heap ordering, except for one node whose value may be too small or too large. The auxiliary functions [sift_up] and [sift_down] take such a misplaced value, and move it "up" (respectively: "down") until the heap ordering is restored. Functions [sift_up] and [sift_down] do not perform swaps, but rather expect the value to be assigned in the heap as an additional parameter [x], resulting in twice less assignments. *) (* store [x] at index [i], moving it up if necessary *) let rec sift_up h i x = if i = 0 then Dynarray.set h 0 x else let p = parent_node i in let y = Dynarray.get h p in if E.compare x y < 0 then ( Dynarray.set h i y; sift_up h p x ) else Dynarray.set h i x let add h x = let i = Dynarray.length h in Dynarray.add_last h x; if i > 0 then sift_up h i x let add_iter h iter x = iter (add h) x let min_elt h = if Dynarray.is_empty h then None else Some (Dynarray.get h 0) let get_min_elt h = if Dynarray.is_empty h then invalid_arg "empty priority queue"; Dynarray.get h 0 let lt h i j = E.compare (Dynarray.get h i) (Dynarray.get h j) < 0 (* store [x] at index [i], moving it down if necessary *) let rec sift_down h ~len i x = let left = left_child i in if left >= len then Dynarray.set h i x (* no child, stop *) else let smallest = let right = right_child i in if right >= len then left (* no right child *) else if lt h left right then left else right in let y = Dynarray.get h smallest in if E.compare y x < 0 then ( Dynarray.set h i y; sift_down h ~len smallest x ) else Dynarray.set h i x let pop_min h = let n = Dynarray.length h in if n = 0 then None else let x = Dynarray.pop_last h in if n = 1 then Some x else ( let r = Dynarray.get h 0 in sift_down h ~len:(n - 1) 0 x; Some r ) let remove_min h = let n = Dynarray.length h in if n > 0 then ( let x = Dynarray.pop_last h in if n > 1 then sift_down h ~len:(n - 1) 0 x ) let copy = Dynarray.copy (* array to heap in linear time (Floyd, 1964) many elements travel a short distance, few travel longer distances and we can show that it totals to O(N) *) let heapify h = let n = Dynarray.length h in for i = n/2 - 1 downto 0 do sift_down h ~len:n i (Dynarray.get h i) done; h let of_array a = Dynarray.of_array a |> heapify let of_list l = Dynarray.of_list l |> heapify let of_iter iter x = let a = Dynarray.create () in iter (Dynarray.add_last a) x; heapify a let iter_unordered = Dynarray.iter let fold_unordered = Dynarray.fold_left end module type MinPoly = sig type 'a t type 'a elt val create: unit ->'a t val length: 'a t -> int val is_empty: 'a t -> bool val add: 'a t -> 'a elt -> unit val add_iter: 'a t -> (('a elt -> unit) -> 'x -> unit) -> 'x -> unit val min_elt: 'a t -> 'a elt option val get_min_elt: 'a t -> 'a elt val pop_min: 'a t -> 'a elt option val remove_min: 'a t -> unit val clear: 'a t -> unit val copy: 'a t -> 'a t val of_array: 'a elt array -> 'a t val of_list: 'a elt list -> 'a t val of_iter: (('a elt -> unit) -> 'x -> unit) -> 'x -> 'a t val iter_unordered: ('a elt -> unit) -> 'a t -> unit val fold_unordered: ('acc -> 'a elt -> 'acc) -> 'acc -> 'a t -> 'acc end module type MaxPoly = sig type 'a t type 'a elt val create: unit -> 'a t val length: 'a t -> int val is_empty: 'a t -> bool val add: 'a t -> 'a elt -> unit val add_iter: 'a t -> (('a elt -> unit) -> 'x -> unit) -> 'x -> unit val max_elt: 'a t -> 'a elt option val get_max_elt: 'a t -> 'a elt val pop_max: 'a t -> 'a elt option val remove_max: 'a t -> unit val clear: 'a t -> unit val copy: 'a t -> 'a t val of_array: 'a elt array -> 'a t val of_list: 'a elt list -> 'a t val of_iter: (('a elt -> unit) -> 'x -> unit) -> 'x -> 'a t val iter_unordered: ('a elt -> unit) -> 'a t -> unit val fold_unordered: ('acc -> 'a elt -> 'acc) -> 'acc -> 'a t -> 'acc end module MakeMaxPoly(E: OrderedPolyType) : MaxPoly with type 'a elt = 'a E.t = struct include MakeMinPoly(struct type 'a t = 'a E.t let compare x y = E.compare y x end) (* renaming a few functions... *) let max_elt = min_elt let get_max_elt = get_min_elt let pop_max = pop_min let remove_max = remove_min end (* Monomorphic priority queues *) module type OrderedType = sig type t val compare: t -> t -> int end module type Min = sig type t type elt val create: unit ->t val length: t -> int val is_empty: t -> bool val add: t -> elt -> unit val add_iter: t -> ((elt -> unit) -> 'x -> unit) -> 'x -> unit val min_elt: t -> elt option val get_min_elt: t -> elt val pop_min: t -> elt option val remove_min: t -> unit val clear: t -> unit val copy: t -> t val of_array: elt array -> t val of_list: elt list -> t val of_iter: ((elt -> unit) -> 'x -> unit) -> 'x -> t val iter_unordered: (elt -> unit) -> t -> unit val fold_unordered: ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc end module MakeMin(E: OrderedType) = struct include MakeMinPoly(struct type 'a t = E.t let compare = E.compare end) type t = E.t Dynarray.t end module type Max = sig type t type elt val create: unit ->t val length: t -> int val is_empty: t -> bool val add: t -> elt -> unit val add_iter: t -> ((elt -> unit) -> 'x -> unit) -> 'x -> unit val max_elt: t -> elt option val get_max_elt: t -> elt val pop_max: t -> elt option val remove_max: t -> unit val clear: t -> unit val copy: t -> t val of_array: elt array -> t val of_list: elt list -> t val of_iter: ((elt -> unit) -> 'x -> unit) -> 'x -> t val iter_unordered: (elt -> unit) -> t -> unit val fold_unordered: ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc end module MakeMax(E: OrderedType) = struct include MakeMinPoly(struct type 'a t = E.t let compare x y = E.compare y x end) type t = E.t Dynarray.t let max_elt = min_elt let get_max_elt = get_min_elt let pop_max = pop_min let remove_max = remove_min end