(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (** First-in first-out queues. This module implements queues (FIFOs), with in-place modification. See {{!examples} the example section} below. *) (** {b Unsynchronized accesses} *) [@@@alert unsynchronized_access "Unsynchronized accesses to queues are a programming error." ] (** Unsynchronized accesses to a queue may lead to an invalid queue state. Thus, concurrent accesses to queues must be synchronized (for instance with a {!Mutex.t}). *) type !'a t (** The type of queues containing elements of type ['a]. *) exception Empty (** Raised when {!Queue.take} or {!Queue.peek} is applied to an empty queue. *) val create : unit -> 'a t (** Return a new queue, initially empty. *) val add : 'a -> 'a t -> unit (** [add x q] adds the element [x] at the end of the queue [q]. *) val push : 'a -> 'a t -> unit (** [push] is a synonym for [add]. *) val take : 'a t -> 'a (** [take q] removes and returns the first element in queue [q], or raises {!Empty} if the queue is empty. *) val take_opt : 'a t -> 'a option (** [take_opt q] removes and returns the first element in queue [q], or returns [None] if the queue is empty. @since 4.08 *) val pop : 'a t -> 'a (** [pop] is a synonym for [take]. *) val peek : 'a t -> 'a (** [peek q] returns the first element in queue [q], without removing it from the queue, or raises {!Empty} if the queue is empty. *) val peek_opt : 'a t -> 'a option (** [peek_opt q] returns the first element in queue [q], without removing it from the queue, or returns [None] if the queue is empty. @since 4.08 *) val top : 'a t -> 'a (** [top] is a synonym for [peek]. *) val drop : 'a t -> unit (** [drop q] removes the first element in queue [q], or raises {!Empty} if the queue is empty. @since 5.3 *) val clear : 'a t -> unit (** Discard all elements from a queue. *) val copy : 'a t -> 'a t (** Return a copy of the given queue. *) val is_empty : 'a t -> bool (** Return [true] if the given queue is empty, [false] otherwise. *) val length : 'a t -> int (** Return the number of elements in a queue. *) val iter : ('a -> unit) -> 'a t -> unit (** [iter f q] applies [f] in turn to all elements of [q], from the least recently entered to the most recently entered. The queue itself is unchanged. *) val fold : ('acc -> 'a -> 'acc) -> 'acc -> 'a t -> 'acc (** [fold f accu q] is equivalent to [List.fold_left f accu l], where [l] is the list of [q]'s elements. The queue remains unchanged. *) val transfer : 'a t -> 'a t -> unit (** [transfer q1 q2] adds all of [q1]'s elements at the end of the queue [q2], then clears [q1]. It is equivalent to the sequence [iter (fun x -> add x q2) q1; clear q1], but runs in constant time. *) (** {1 Iterators} *) val to_seq : 'a t -> 'a Seq.t (** Iterate on the queue, in front-to-back order. The behavior is not specified if the queue is modified during the iteration. @since 4.07 *) val add_seq : 'a t -> 'a Seq.t -> unit (** Add the elements from a sequence to the end of the queue. @since 4.07 *) val of_seq : 'a Seq.t -> 'a t (** Create a queue from a sequence. @since 4.07 *) (** {1:examples Examples} {2 Basic Example} A basic example: {[ # let q = Queue.create () val q : '_weak1 Queue.t = # Queue.push 1 q; Queue.push 2 q; Queue.push 3 q - : unit = () # Queue.length q - : int = 3 # Queue.pop q - : int = 1 # Queue.pop q - : int = 2 # Queue.pop q - : int = 3 # Queue.pop q Exception: Stdlib.Queue.Empty. ]} {2 Search Through a Graph} For a more elaborate example, a classic algorithmic use of queues is to implement a BFS (breadth-first search) through a graph. {[ type graph = { edges: (int, int list) Hashtbl.t } (* Search in graph [g] using BFS, starting from node [start]. It returns the first node that satisfies [p], or [None] if no node reachable from [start] satisfies [p]. *) let search_for ~(g:graph) ~(start:int) (p:int -> bool) : int option = let to_explore = Queue.create() in let explored = Hashtbl.create 16 in Queue.push start to_explore; let rec loop () = if Queue.is_empty to_explore then None else (* node to explore *) let node = Queue.pop to_explore in explore_node node and explore_node node = if not (Hashtbl.mem explored node) then ( if p node then Some node (* found *) else ( Hashtbl.add explored node (); let children = Hashtbl.find_opt g.edges node |> Option.value ~default:[] in List.iter (fun child -> Queue.push child to_explore) children; loop() ) ) else loop() in loop() (* a sample graph *) let my_graph: graph = let edges = List.to_seq [ 1, [2;3]; 2, [10; 11]; 3, [4;5]; 5, [100]; 11, [0; 20]; ] |> Hashtbl.of_seq in {edges} # search_for ~g:my_graph ~start:1 (fun x -> x = 30) - : int option = None # search_for ~g:my_graph ~start:1 (fun x -> x >= 15) - : int option = Some 20 # search_for ~g:my_graph ~start:1 (fun x -> x >= 50) - : int option = Some 100 ]} *)