Caml1999I037iWPO0Stdlib__Bigarray+float16_elt;@@+Float16_elt@@,bigarray.mli` ` )@@A@@@A@@@@@`  @@A@@@A@+float32_elt;@@+Float32_elt@@a*=a*H@@#C@@@A@@@@@a**@@A@&B@A@+float64_elt;@@+Float64_elt@@%bI\&bIg@@5E@@@A@@@@@)bII@@A@8D@A@/int8_signed_elt;@@/Int8_signed_elt@@7ch8ch@@GG@@@A@@@@@;chh@@A@JF@A@1int8_unsigned_elt;@@1Int8_unsigned_elt@@IdJd@@YI@@@A@@@@@Md@@A@\H@A@0int16_signed_elt;@@0Int16_signed_elt@@[e\e@@kK@@@A@@@@@_e@@A@nJ@A@2int16_unsigned_elt;@@2Int16_unsigned_elt@@mfnf@@}M@@@A@@@@@qf@@A@L@A@)int32_elt;@@)Int32_elt!@@g!g*@@O@@@A@@@@@g@@A@N@A@)int64_elt;@@)Int64_elt#@@h+<h+E@@Q@@@A@@@@@h++@@A@P@A@'int_elt;@@'Int_elt%@@iFUiF\@@S@@@A@@@@@iFF@@A@R@A@-nativeint_elt;@@-Nativeint_elt'@@j]rj]@@U@@@A@@@@@j]]@@A@T@A@-complex32_elt;@@-Complex32_elt)@@kk@@W@@@A@@@@@k@@A@V@A@-complex64_elt;@@-Complex64_elt+@@ll@@Y@@@A@@@@@l@@A@X@A@$kind;!a@?!b@>@B'Float32-@%floatD@@@h@@@g@@@ioo@@[@'Float64.@@@@e@@@d@@@fpp+@@-\@+Int8_signed/@1#intA@@@b@@@a@@@c6q,.7q,Y@@F]@-Int8_unsigned0@J@@@_ @@@^@@@`MrZ\NrZ@@]^@,Int16_signed1@a0@@@\@@@[@@@]dses@@t_@.Int16_unsigned2@xG@@@Y@@@X@@@Z{t|t@@`@%Int323@%int32N@@@V@@@U@@@Wuu@@a@%Int644@%int64O@@@S#@@@R@@@Tvv7@@b@#Int5@@@@P(@@@O@@@Qw8:w8U@@c@)Nativeint6@ؠ)nativeintM@@@M/@@@L@@@NxVXxV@@d@)Complex327@&Stdlib'Complex!t@@@J:@@@I@@@Kyy@@ e@)Complex64K@'Complex!t@@@GB@@@F@@@Hzz@@$f@$CharL@($charB@@@D@@@C@@@E,{-{@@44?4Z4t@@C@@(num_dims@Y!a@Š!b@Ġ!c@@@@@@@@@Ȑ0caml_ba_num_dimsAAh@@@Z99Z99@@D@@$dims@~!a@ˠ!b@ʠ!c@@@@@@@@@@@@@]::]::;@@E@@'nth_dim@!a@Ҡ!b@Ѡ!c@@@@@@@@@@@@@@@א+caml_ba_dimBA@@@@$a::%a:;@@4F@@$kind@Р!a@۠!b@ڠ!c@@@@K@@@@@ݐ,caml_ba_kindAA@@@Ji<]<_Ki<]<@@ZG@@&layout @!a@ߠ!b@ޠ!c@@@@@@@@@.caml_ba_layoutAA@@@ol<<pl<=@@H@@-change_layout!@!a@!b@!c@@@@@à!d@@@@7 @@@@@@@5caml_ba_change_layoutBA6@@@@o=E=Gp==@@I@@-size_in_bytes"@M!a@!b@!c@@@@@@@@@@{?d?f{?d?@@J@@#get#@n!a@!b@!c@@@@@@@@@@@@@@@3caml_ba_get_genericBA@@@@@ @@ @V@@K@@#set$@!a@!b@!c@@@@@@@@@@@@$unitF@@@@@@@@@3caml_ba_set_genericCA@@@@@%DD&DSDn@@5L@@(sub_left%@Ѡ!a@ !b@ n@@@@@@@@@@@@@@@@@ @@@ @@ @@@@+caml_ba_subCA@@@@@\GhGj]GG@@lM@@)sub_right&@!a@!b@@@@@@@@P@@@@V@@@%@@@@@@@@@@@@+caml_ba_subCA'@@@@@K[K]KK@@N@@*slice_left'@?!a@!!b@ @@@@@@@]@@@@@@[@@@@@@"@@#@@$-caml_ba_sliceBA]@@@@O}OOO@@O@@+slice_right(@t!a@+!b@*@@@%@@@&@@@@'@@@(@@@)@@@,@@-@@.-caml_ba_sliceBA@@@@SSSzS@@ P@@$blit)@!a@2!b@1!c@0@@@/@ @@@3 @@@4@@5@@6,caml_ba_blitBA@@@@+VV,WW@@;Q@@$fill*@נ!a@:!b@8!c@7@@@9@1@@@;@@<@@=,caml_ba_fillBA@@@@SXXTXX@@cR@@@@W, , XYY@gS@@@Ӡ&Array0@!t+;!a@U!b@T!c@S@C@A@OOO@BBB@@@| [[} [[@@@@T@A@&create,@!a@Z!b@Y@@@V@ˠ!c@X@@@W> @@@[@@\@@]@\;\=\;\u@@U@@$init-@!a@b!b@a@@@^@!c@`@@@_@+ @@@c@@d@@e@@f@]?]A]?]}@@V@@$kind.@@!a@!b@!c@@@@ F@@@@@@ t{ll u{ll@@ h@@#get?@!a@ !b@ !c@@@@ @ i@@@ @@ @@.%caml_ba_ref_1BA1@@@@ m)m+ m)mg@@ i@@#set@@.!a@!b@!c@@@@@ @@@@@@@@@@@@@.%caml_ba_set_1CA_@@@@@ nn no@@ j@@#subA@]!a@!b@!c@@@@@ @@@@ @@@{@@@@@@@ @@!+caml_ba_subCA@@@@@ pp  pGp\@@ k@@%sliceB@!a@&!b@%!c@$@@@"@ @@@#!t@@@'@@(@@)@ ,pp -pq @@ <l@@$blitC@!a@-!b@,!c@+@@@*@Ҡ @@@.8@@@/@@0@@1,caml_ba_blitBA@@@@ Zr#r% [r]rs@@ jm@@$fillD@!a@5!b@3!c@2@@@4@`@@@6@@7@@8,caml_ba_fillBA@@@@ rr rs@@ n@@(of_arrayE@ !a@>!b@=@@@9@Ѡ!c@<@@@:@R@@@;2@@@?@@@@@A@@B@ s}s s}s@@ o@@*unsafe_getF@C!a@G!b@D!c@C@@@E@ @@@F@@H@@I5%caml_ba_unsafe_ref_1BAn@@@@ tt tte@@ p@@*unsafe_setG@k!a@N!b@K!c@J@@@L@ @@@M@@@@O@@P@@Q@@R5%caml_ba_unsafe_set_1CA@@@@@ u$u& u_u@@ q@@@@ Le<e< vLvO@ r@@@Ӡ&Array2 @!tH;!a@!b@!c@@C@A@OOO@BBB@@@ 1w<w> 2w<wT@@@@ As@A@&createI@ F!a@%!b@$@@@@!c@#@@@ @ +@@@!@ 1@@@"J$ @@@&@@'@@(@@)@@*@ fww gwx*@@ vt@@$initJ@ {!a@5!b@4@@@+@!c@3@@@,@ `@@@-@ f@@@.@@ n@@@/@ t@@@0.@@1@@2C1-$@@@6@@7@@8@@9@@:@@;@ ybyd yy@@ u@@$dim1K@T!a@>!b@=!c@<@@@? @@@@@@A.%caml_ba_dim_1AAc@@@ |H|J |H|@@ v@@$dim2L@y!a@D!b@C!c@B@@@E @@@F@@G.%caml_ba_dim_2AA@@@ || |}@@ w@@$kindM@!a@K!b@J!c@H@@@I @@@L@@M,caml_ba_kindAA@@@ }U}W }U}@@ (x@@&layoutN@Ġ!a@O!b@N!c@Q@@@P j@@@R@@S.caml_ba_layoutAAӠ@@@ =}} >}~ @@ My@@-change_layoutO@!a@Y!b@X!c@T@@@U@ !d@W@@@V @@@Z@@[@@\@ j~=~? k~=~@@ zz@@-size_in_bytesP@!a@_!b@^!c@]@@@` ]@@@a@@b@ 68 6a@@ {@@#getQ@7!a@h!b@d!c@c@@@e@ @@@f@ @@@g@@i@@j@@k.%caml_ba_ref_2CA N@@@@@  $@@ |@@#setR@f!a@q!b@m!c@l@@@n@ @@@o@ @@@p@@@@r@@s@@t@@u@@v.%caml_ba_set_2DA @@@@@@ ') 't@@}@@(sub_leftS@!a@}!b@| 9@@@w@@@x@ @@@y@ @@@z N@@@{@@@~@@@@@@+caml_ba_subCA @@@@@'(@@7~@@)sub_rightT@Ӡ!a@!b@ ^@@@@@@@ @@@@ !@@@ s@@@@@@@@@@@@+caml_ba_subCA @@@@@^ _;N@@n@@*slice_leftU@ !a@!b@ @@@@@@@ R@@@R!t @@@@@@@@@@@KMK@@@@+slice_rightV@8!a@!b@ @@@@@@@ @@@.!t @@@@@@@@@@@@@@@$blitW@e!a@!b@!c@@@@@y @@@@@@@@@@,caml_ba_blitBA |@@@@#.0$h|@@@@$fillX@!a@!b@!c@@@@@@@@@@@@,caml_ba_fillBA @@@@((*@@@@(of_arrayY@$!a@!b@@@@@ ^!c@@@@@ ߠ @@@@@@ޠ#@@@@@@@@@@C,D,@@S@@*unsafe_getZ@!a@!b@!c@@@@@8@@@@>@@@@@@@@@5%caml_ba_unsafe_ref_2CA @@@@@r0DFs1~@@@@*unsafe_set[@!a@Ǡ!b@à!c@@@@@g@@@@m@@@@ @@@@@@@@@@@̐5%caml_ba_unsafe_set_2DA ;@@@@@@5 6Iw@@@@@@w&w&:@@@@Ӡ&Array3 @!t\;!a@B!b@A!c@@@C@A@OOO@BBB@@@CC@@@@@A@&create]@!a@J!b@I@@@C@ !c@H@@@D@@@@E@@@@F@@@@GP*&@@@K@@L@@M@@N@@O@@P@ Gnp Gn@@@@$init^@!!a@^!b@]@@@Q@ [!c@\@@@R@@@@S@ @@@T@@@@U@@@@@V@ @@@W@&@@@X:@@Y@@Z@@[O=90@@@_@@`@@a@@b@@c@@d@@e@ZN[OQ@@j@@$dim1_@`!a@h!b@g!c@f@@@iM@@@j@@k.%caml_ba_dim_1AA @@@_24_2k@@@@$dim2`@!a@n!b@m!c@l@@@or@@@p@@q.%caml_ba_dim_2AA :@@@bb@@@@$dim3a@!a@t!b@s!c@r@@@u@@@v@@w.%caml_ba_dim_3AA _@@@eCEeC|@@@@$kindb@Ϡ!a@{!b@z!c@x@@@y@@@|@@},caml_ba_kindAA @@@hh @@@@&layoutc@!a@!b@~!c@@@@ A@@@@@.caml_ba_layoutAA @@@k>@k>@@$@@-change_layoutd@!a@!b@!c@@@@@ h!d@@@@6 @@@@@@@@AoBo@@Q@@-size_in_bytese@G!a@!b@!c@@@@4@@@@@@bzcz@@r@@#getf@h!a@!b@!c@@@@@W@@@@]@@@@c@@@!@@@@@@@@.%caml_ba_ref_3DA +@@@@@@]_]@@@@#setg@!a@!b@!c@@@@@@@@@@@@@@@@@# @@@@@@@@@@@@@.%caml_ba_set_3EA g@@@@@@@@@@@(sub_lefth@۠!a@!b@@@@@@@@@@@@@@@3@@@@@@@@@@@@+caml_ba_subCA @@@@@ -/ }@@@@)sub_righti@!a@!b@C@@@@@@@@@@@@@@/X@@@@@@@@@@@@+caml_ba_subCA נ@@@@@CD@@S@@,slice_left_1j@I!a@Ǡ!b@Ơ@@@@@@@7@@@@=@@@!t@@@@@@@@@@@@@vwX@@@@-slice_right_1k@|!a@Ҡ!b@Ѡ@@@@@@@j@@@@p@@@!t@@@@@@@@@@@@@@@@@,slice_left_2l@!a@ܠ!b@۠@@@@@@@@@@!t@@@@@@@@@@@TVT@@@@-slice_right_2m@ݠ!a@!b@@@@@@@@@@@.!t@@@@@@@@@@@C@@@@$blitn@ !a@!b@!c@@@@@ @@@ @@@@@@@,caml_ba_blitBAǠ@@@@23@@B@@$fillo@8!a@!b@!c@@@@@ 8@@@@@@@,caml_ba_fillBA@@@@ZHJ[H@@j@@(of_arrayp@o!a@!b@@@@@!c@@@@@*.2"@@@@@@@@@($@@@@@@@@@@L@@@@*unsafe_getq@!a@ !b@!c@@@@@@@@@@@@@@@@ !@@ @@ @@ @@5%caml_ba_unsafe_ref_3DA\@@@@@@%@@@@*unsafe_setr@Ϡ!a@!b@!c@@@@@@@@@@@@@@@@@# @@@@@@@@@@@@@5%caml_ba_unsafe_set_3EA@@@@@@@@@@@@@ A RU@@@@2genarray_of_array0 @!t!a@!b@!c@@@@!t @@@@@)%identityAA̠@@@67@@F@@2genarray_of_array1 @!t!a@!b@!c@@@@,!t @@@@@)%identityAA@@@arrb@@q@@2genarray_of_array2@!t!a@!b@!c@@@@W!t @@@@@)%identityAA"@@@--K@@@@2genarray_of_array3@!t!a@!b@!c@@@@!t @@@@@)%identityAAN@@@F@@@@2array0_of_genarray@!t!a@!b@!c@@@@ !t @@@@@@@@@@2array1_of_genarray@!t!a@à!b@ !c@@@@~!t @@@@@@@@@@2array2_of_genarray@!t!a@ɠ!b@Ƞ!c@@@@Z!t @@@@@@-.@@=@@2array3_of_genarray@!t!a@Ϡ!b@Π!c@@@@!t @@@@@@TU@@d@@'reshape@6!t!a@נ!b@֠!c@@@@@!O@@@@@@U!t@@@@@@@@  /@@@@)reshape_0@h!t!a@ޠ!b@ݠ!c@@@@ !t @@@@@@iii@@@@)reshape_1@!t!a@!b@!c@@@@@@@@R!t@@@@@@@@""`@@@@)reshape_2@!t!a@!b@!c@@@@@@@@@@@@:!t @@@@@@@@@@ &&@@@@)reshape_3@!t!a@!b@!c@@@@@@@@@ @@@@@@@!t&"@@@@@@@@@@@@F*nnG+~@@V@@@N>0Stdlib__Bigarray0], [<=], etc, as well as {!Stdlib.compare}); - hashing (module [Hash]); - and structured input-output (the functions from the {!Marshal} module, as well as {!Stdlib.output_value} and {!Stdlib.input_value}). ,bigarray.mliP77~ z |@@@@@@3@@@@@@#intA;@@@A@@@@@:@A@$charB;@@A@@@@@>@A@&stringQ;@@ A@@@@@B@@@%bytesC;@@ A@@@@@F@@@%floatD;@@A@@@@@J@@@$boolE;@@%falsec@@T@$trued@@Z@@@A@@@@@[@A@$unitF;@@"()e@@e@@@A@@@@@f@A@ #exnG;@@@A@@@@@j@@@#effH;@@O@A@A@@@@@@s@@@,continuationI;@@Q@@P@B@A@nY@@@@@@@@@%arrayJ;@@R@A@A@@@@@@@@@ $listK;@@S@A"[]f@@@"::g@@@T@@@ @@A@Y@@@@@@@@&optionL;@@V@A$Noneh@@@$Somei@@@@@A@Y@@@@@@@@)nativeintM;@@A@@@@@@@@%int32N;@@A@@@@@@@@%int64O;@@A@@@@@@@@&lazy_tP;@@X@AJA@Y@@@@@@@@5extension_constructorR;@@A@@@@@@@@*floatarrayS;@@A@@@@@@@@&iarrayT;@@Y@A[A@Y@@@@@@@@*atomic_locU;@@Z@AdA@@@@@@@@@.Assert_failure`#@@@@@J@@@@@@@@[@@A=ocaml.warn_on_literal_pattern @ @0Division_by_zero]#@@@A  @+End_of_file\#$@@@A@'FailureY#,@'@@A!$$@0Invalid_argumentX#5@0@@A*$-#-@-Match_failureV#>@@=@9@;@@a@@A;5>4>@)Not_foundZ#O@@@AC=F<F@-Out_of_memoryW#W@@@AKENDN@.Stack_overflow^#_@@@ASMVLV@.Sys_blocked_io_#g@@@A[U^T^@)Sys_error[#o@j@@Ad^g]g@:Undefined_recursive_modulea#x@@w@s@u@@h@@Auoxnx@:Continuation_already_takenb#@@@A}wv@&Stdlib@Ax {1:elementkinds Element kinds} @ ~ ~@ ~ @@@@@@ _ Bigarrays can contain elements of the following kinds: - IEEE half precision (16 bits) floating-point numbers ({!Bigarray.float16_elt}), - IEEE single precision (32 bits) floating-point numbers ({!Bigarray.float32_elt}), - IEEE double precision (64 bits) floating-point numbers ({!Bigarray.float64_elt}), - IEEE single precision (2 * 32 bits) floating-point complex numbers ({!Bigarray.complex32_elt}), - IEEE double precision (2 * 64 bits) floating-point complex numbers ({!Bigarray.complex64_elt}), - 8-bit integers (signed or unsigned) ({!Bigarray.int8_signed_elt} or {!Bigarray.int8_unsigned_elt}), - 16-bit integers (signed or unsigned) ({!Bigarray.int16_signed_elt} or {!Bigarray.int16_unsigned_elt}), - OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on 64-bit architectures) ({!Bigarray.int_elt}), - 32-bit signed integers ({!Bigarray.int32_elt}), - 64-bit signed integers ({!Bigarray.int64_elt}), - platform-native signed integers (32 bits on 32-bit architectures, 64 bits on 64-bit architectures) ({!Bigarray.nativeint_elt}). Each element kind is represented at the type level by one of the [*_elt] types defined below (defined with a single constructor instead of abstract types for technical injectivity reasons). @since 4.07 Moved from otherlibs to stdlib. @since 5.2 Added float16_elt element kind. B  ^ @@@@@@A++float16_eltA` ` @@;@@+Float16_elt@@` ` )@@A@@@A@@@@@`  @@A@@@@#    @ @@@ @@A@ @@  @A++float32_eltBa*/a*:@@;@@+Float32_elt@@a*=a*H@@C@@@A@@@@@a**@@A@B@@#    @ @@@ @@A@ @@3@<6@A @A++float64_eltCbINbIY@@;@@+Float64_elt@@bI\bIg@@E@@@A@@@@@bII@@A@ D@@#    @ @@@ @@A@ @@3@#>8@A @A+/int8_signed_eltDchmch|@@;@@/Int8_signed_elt@@chch@@)G@@@A@@@@@chh@@A@,F@@#    @ @@@ @@A@ @@3@#>8@A @A+1int8_unsigned_eltE(d)d@@;@@1Int8_unsigned_elt@@2d3d@@KI@@@A@@@@@6d@@A@NH@@#    @ @@@ @@A@ @@3;::;;;;;@#>8@A @A+0int16_signed_eltFJeKe@@;@@0Int16_signed_elt@@TeUe@@mK@@@A@@@@@Xe@@A@pJ@@#    @ @@@ @@A@ @@3]\\]]]]]@#>8@A @A+2int16_unsigned_eltGlfmf@@;@@2Int16_unsigned_elt@@vfwf@@M@@@A@@@@@zf@@A@L@@#    @ @@@ @@A@ @@3~~@#>8@A @A+)int32_elt Hgg@@;@@)Int32_elt!@@g!g*@@O@@@A@@@@@g@@A@N@@#    @ @@@ @@A@ @@3@#>8@A @A+)int64_elt"Ih+0h+9@@;@@)Int64_elt#@@h+<h+E@@Q@@@A@@@@@h++@@A@P@@#    @ @@@ @@A@ @@3@#>8@A @A+'int_elt$JiFKiFR@@;@@'Int_elt%@@iFUiF\@@S@@@A@@@@@iFF@@A@R@@#    @ @@@ @@A@ @@3@#>8@A @A+-nativeint_elt&Kj]bj]o@@;@@-Nativeint_elt'@@j]rj]@@U@@@A@@@@@j]]@@A@T@@#    @ @@@ @@A@ @@3@#>8@A @A+-complex32_elt(Lkk@@;@@-Complex32_elt)@@ k!k@@9W@@@A@@@@@$k@@A@8@A @A+-complex64_elt*M8l9l@@;@@-Complex64_elt+@@BlCl@@[Y@@@A@@@@@Fl@@A@^X@@#    @ @@@ @@A@ @@3KJJKKKKK@#>8@A @A+$kind,NZn[n@А!a@3a``aaaaa@3-;@@@@@B@A@GG@BB@@@tnu|7@)ocaml.doc  To each element kind is associated an OCaml type, which is the type of OCaml values that can be stored in the Bigarray or read back from it. This type is not necessarily the same as the type of the array elements proper: for instance, a Bigarray whose elements are of kind [float32_elt] contains 32-bit single precision floats, but reading or writing one of its elements from OCaml uses the OCaml type [float], which is 64-bit double precision floats. The GADT type [('a, 'b) kind] captures this association of an OCaml type ['a] for values read or written in the Bigarray, and of an element kind ['b] which represents the actual contents of the Bigarray. Its constructors list all possible associations of OCaml types with element kinds, and are re-exported below for backward-compatibility reasons. Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as: {[ let zero : type a b. (a, b) kind -> a = function | Float32 -> 0.0 | Complex32 -> Complex.zero | Float64 -> 0.0 | Complex64 -> Complex.zero | Float16 -> 0.0 | Int8_signed -> 0 | Int8_unsigned -> 0 | Int16_signed -> 0 | Int16_unsigned -> 0 | Int32 -> 0l | Int64 -> 0L | Int -> 0 | Nativeint -> 0n | Char -> '\000' ]} @since 5.2 Constructor Float16 for the GADT. }>>@@@@@@@@@Z@@Ann@@BAА!b@/nn@@ @;7 @B'Float32-@Mm@@@@@@@@@oo@@[@'Float64.@e@@@@@@@@@pp+@@\@+Int8_signed/@}@@@@@@@@@q,.q,Y@@]@-Int8_unsigned0@@@@@@@@@@rZ\rZ@@^@,Int16_signed1@@@@@@@@@@ ss@@(_@.Int16_unsigned2@Š@@@ @@@ @@@'t(t@@@`@%Int323@ݠ@@@@@@@@@?u@u@@Xa@%Int644@@@@@@@@@@WvXv7@@pb@#Int5@ >@@@@@@@@@ow8:pw8U@@c@)Nativeint6@%@@@@@@@@@"xVXxV@@d@)Complex327@=$'Complex!t@@@@@@@@@yy@@e@)Complex64K@X?'Complex!t@@@@@@@@@zz@@f@$CharL@s@@@@@@@@@{{@@g@'Float16M@@@@L@@@@@@|y@@h@@@A@@@@@@@}A@m@#ZZoo@I@@г\$kindoS@г`%float o o@@h@@гe+float32_eltoo@@m@@@woi@@k@#ggpp@V@@гi$kind'p'`@гm%float/p0p@@uͰ@@гr+float64_elt9p:p%@@zװ@@@ذ=pv@@x@#ttBq,0Cq,;@c@@гv$kindLq,Um@гz#intTq,?Uq,B@@@@г/int8_signed_elt^q,D_q,S@@@@@bq,>@@@#grZ^hrZk@p@@г$kindqrZz@г#intyrZozrZr@@@@г1int8_unsigned_eltrZtrZ@@!@@@"rZn@@@#ss@}@@г$kinds@г#intss@@<@@г0int16_signed_eltss@@F@@@Gs@@@#tt@@@г$kindt@г#inttt@@a@@г2int16_unsigned_elttt@@k@@@lt@@@#uu@@@г$kindu@г%int32uu@@@@г)int32_eltuu @@@@@u@@@#vv@@@г$kindv3@г%int64 v!v&@@@@г)int64_eltv(v1@@@@@v @@@# ° w8<!w8?@@@гĠ$kind*w8Q@гȠ#int2w8C3w8F@@а@@г͠'int_elt<w8H=w8O@@ڰ@@@۰@w8B@@@#ϠϰExVZFxVc@@@гѠ$kindOxV@гՠ)nativeintWxVgXxVp@@@@гڠ-nativeint_eltaxVrbxV@@@@@exVf@@@#ܠܰjyky@@@гޠ$kindty@г⠡}y~y@yy@@@ @@гꠐ-complex32_eltyy@@*@@@+y@@@#zz@@@г$kindz@г򠡠zz@zz@@@K@@г-complex64_eltzz@@U@@@Vz@@@#{{@@@г$kind{ @г$char{{@@ p@@г1int8_unsigned_elt{{ @@z@@@{{ @@ @#  ||@@@г $kind|3{@г%float||$@@@@г+float16_elt|&|1@@@@@&|@@@@A@@@@@@@@3  @@A@'float16a@гʠ$kind$%@г%float./@@ @@@30//00000@@A@@г+float16_elt>?@@ @@@@@@'@@@J&@@@M)@ؐ % See {!Bigarray.char}. @since 5.2 Z[ @@@@@@@si@@9@n@@@@@@6'float32bqr&@г $kindz>{B@гF%float*/@@ @@@3@Wt@@A@@гҠ+float32_elt1<@@ @@@@@@'@@@)&@@@)@.7 See {!Bigarray.char}. CCC_@@@@@@@j@@9@>Đ@@@@@@6'float64caeal@гv$kindaa@г%floatapau@@ @@@3@Wt@@A@@г+float64_eltawa@@ @@@@@@'@@@"ao&@@@aa)@7 See {!Bigarray.char}. @@@@@@@k@@9@@@@@@@6)complex32d@г̠$kind&'@г'Complex!t45@ 89@@@@@@#3;::;;;;;@`}I@A @@г3-complex32_eltIJ@@ @@@$@@@0@@@'U/@@@X2@㐠7 See {!Bigarray.char}. ef@@@@@@@~l@@B@y@@@@@@6)complex64e|}@г+$kind $@г'Complex!t @ @@@@@@(3@`I@A @@гp-complex64_elt@@ @@@)@@@0@@@,/@@@2@B7 See {!Bigarray.char}. %%%A@@@@@@@m@@B@Rؐ@@@@@@6+int8_signedfCGCR@г$kindClCp@г#intCVCY@@ @@@-3@W}@@A@@г/int8_signed_eltC[Cj@@ @@@.@@@'@@@1 CU&@@@ CC)@7 See {!Bigarray.char}.  qq q@@@@@@@ 3n@@9@ .@@@@@@6-int8_unsignedg 1 2@гࠐ$kind : ;@г #int D E@@ @@@23 F E E F F F F F@Wt@@A@@г,1int8_unsigned_elt T U@@ @@@3@@@'@@@6 `&@@@ c)@7 See {!Bigarray.char}.  p q@@@@@@@ o@@9@ @@@@@@6,int16_signedh  @г6$kind   @г m#int  @@ @@@73        @Wt@@A@@г`0int16_signed_elt  @@ @@@8@@@'@@@; &@@@ )@D7 See {!Bigarray.char}.   +@@@@@@@ p@@9@T ڐ@@@@@@6.int16_unsignedi -1 -?@г$kind -\ -`@г à#int -C -F@@ @@@<3        @Wt@@A@@г2int16_unsigned_elt -H -Z@@ @@@=@@@'@@@@ -B&@@@ --)@7 See {!Bigarray.char}.  aa a}@@@@@@@ 5q@@9@ 0@@@@@@6#intj 3 4@г⠐$kind < =@г #int F G@@ @@@A3 H G G H H H H H@Wt@@A@@г'int_elt V W@@ @@@B@@@'@@@E b&@@@ e)@𐠠 See {!Bigarray.char} and {!section:elementkinds}. Beware that this is a bigarray containing OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on 64-bit architectures), which does not match the [C] int type.  r s  @@@@@@@ r@@9@ @@@@@@6%int32k      @г8$kind      @г ࠐ%int32      @@ @@@F3        @Wt@@A@@г)int32_elt      @@ @@@G@@@'@@@J   &@@@   )@F7 See {!Bigarray.char}.       @@@@@@@ s@@9@V ܐ@@@@@@6%int64l      @г$kind      @г 2%int64      @@ @@@K3        @Wt@@A@@гR)int64_elt      @@ @@@L@@@'@@@O   &@@@   )@7 See {!Bigarray.char}.      !@@@@@@@ 7t@@9@ 2@@@@@@6)nativeintm 5!! 6!!@г䠐$kind >!!= ?!!A@г )nativeint H!!# I!!,@@ @@@P3 J I I J J J J J@Wt@@A@@гd-nativeint_elt X!!. Y!!;@@ @@@Q@@@'@@@T d!!"&@@@ g!!)@򐠠7 See {!Bigarray.char}.  t!B!B u!B!^@@@@@@@ u@@9@ @@@@@@6$charn !`!d !`!h@г:$kind !`! !`!@г l$char !`!l !`!p@@ @@@U3        @Wt@@A@@г 1int8_unsigned_elt !`!r !`!@@ @@@V@@@'@@@Y !`!k&@@@ !`!`)@H 6 As shown by the types of the values above, Bigarrays of kind [float16_elt], [float32_elt] and [float64_elt] are accessed using the OCaml type [float]. Bigarrays of complex kinds [complex32_elt], [complex64_elt] are accessed with the OCaml type {!Complex.t}. Bigarrays of integer kinds are accessed using the smallest OCaml integer type large enough to represent the array elements: [int] for 8- and 16-bit integer Bigarrays, as well as OCaml-integer Bigarrays; [int32] for 32-bit integer Bigarrays; [int64] for 64-bit integer Bigarrays; and [nativeint] for platform-native integer Bigarrays. Finally, Bigarrays of kind [int8_unsigned_elt] can also be accessed as arrays of characters instead of arrays of small integers, by using the kind value [char] instead of [int8_unsigned].  !! $$@@@@@@@ v@@9@X ސ@@@@@@62kind_size_in_byteso $$ $$@б@г$kind $$ $$@А!a@bO@Z3        @Ur>@A $$ $$@@А!b@dO@[ $$ $$@@@# @@@^ $$"@@г 預#int $$ $$@@ @@@_$@@@@@`'@@@ !$$ @ h [kind_size_in_bytes k] is the number of bytes used to store an element of type [k]. @since 4.03  .$$ /%Q%b@@@@@@@ Gw@@@ B@@@@@@F P O3 {1 Array layouts}  L%d%d M%d%|@@@@@@3 K J J K K K K K@Xs1@AA+(c_layoutpO Y%~% Z%~%@@;@@,C_layout_typq@@ c%~% d%~%@@ |y@@@A@@@@@ g%~%~@򐠠 % See {!type:Bigarray.fortran_layout}. t%% u%%@@@@@@@A@ x@@#@@@@@@A@  @@@@@@@:"%@A+.fortran_layoutrP %% %%@@;@@2Fortran_layout_typs@@ %% %%@@ {@@@A@@@@@ %%@ + A To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions. In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out in row-major format. That is, for a two-dimensional array, all elements of row 0 are contiguous in memory, followed by all elements of row 1, etc. In other terms, the array elements at [(x,y)] and [(x, y+1)] are adjacent in memory. In the Fortran-style layout, array indices start at 1, and multi-dimensional arrays are laid out in column-major format. That is, for a two-dimensional array, all elements of column 0 are contiguous in memory, followed by all elements of column 1, etc. In other terms, the array elements at [(x,y)] and [(x+1, y)] are adjacent in memory. Each layout style is identified at the type level by the phantom types {!type:Bigarray.c_layout} and {!type:Bigarray.fortran_layout} respectively.  %% *-*@@@@@@@@A@ z@@#@@@@@@A@ @ Ɛ@@@@@@@3        @tnh@A$'@  ֐ {2 Supported layouts} The GADT type ['a layout] represents one of the two supported memory layouts: C-style or Fortran-style. Its constructors are re-exported as values below for backward-compatibility reasons.  *B*B +#+%@@@@@@3        @IC@AA+&layouttQ +'+/ +'+5@А!a@r3        @;@@q@A@A@G@B@@@ +'+'  +V+@@@@ |@@A +'+, +'+.@@ p@;@A(C_layoutu@*@@@s@@@u +8+< +8+U@@ &}@.Fortran_layoutv@=@@@v@@@x  +V+X,@@ 8~@@@A@@@@@@1@A@.@#(( )+8+D@@@г)&layout 2+8+O%@г-(c_layout :+8+F ;+8+N@@5R@@@:S0@@2@#.. B +V+Z C +V+h@#@@г0&layout L +V+yX@г4.fortran_layout T +V+j U +V+x@@<l@@@Amc@@9@@A@e@@ed@(c_layoutw a ++ b ++@г&layout j ++ k ++@г(c_layout t ++ u ++@@ @@@3 v u u v v v v v@@A@@@ @@@ @@@  ++@@ @@@@ .fortran_layoutx  ++  ++@г&layout  ++  ++@г.fortran_layout  ++  ++@@ @@@3        @.K'@A@@@ @@@ @@@  ++@@ @@@@@   Ő 5 {1 Generic arrays (of arbitrarily many dimensions)}  ++ +,@@@@@@3        @<@A(GenarrayR , , , ,@ S@@БA+!tyS ,!,8 ,!,9@А!a@3        @&;@@@@@@@C@A@GGG@BBB@@@ ,!,#@ u The type [Genarray.t] is the type of Bigarrays with variable numbers of dimensions. Any number of dimensions between 0 and 16 is supported. The three type parameters to [Genarray.t] identify the array element kind and layout, as follows: - the first parameter, ['a], is the OCaml type for accessing array elements ([float], [int], [int32], [int64], [nativeint]); - the second parameter, ['b], is the actual kind of array elements ([float32_elt], [float64_elt], [int8_signed_elt], [int8_unsigned_elt], etc); - the third parameter, ['c], identifies the array layout ([c_layout] or [fortran_layout]). For instance, [(float, float32_elt, fortran_layout) Genarray.t] is the type of generic Bigarrays containing 32-bit floats in Fortran layout; reads and writes in this array use the OCaml type [float].  ,:,< %//@@@@@@@@@#A@@A,!,*,!,,@@B@А!b@0,!,/,!,1@@ А!c@;%,!,4&,!,6@@@;C @C@A@OOO@BBB@@@64@@&@@A@6 B54@44@@@4@4@@3:99:::::@y@AB_@&createzG'//H'//@б@г $kindR'//S'//@А!a@T@3ZYYZZZZZ@8@A`'//a'//@@А!b@T@l'//m'//@@@# @@@t'//"@@б@г&layout~'//'//@А!c@T@,'//'//@@@ @@@3@@б@г %array'//'//@гw#int'//'//@@ @@@L@@@@@@Q @@гנ!t'/0'/0@А!ad_'//'//@@А!b]f'//'//@@А!cFm'//'/0@@@xkN@@@v'//@@@- @@z4!@@@N@@}Q$@@@o@@j'@@.caml_ba_createCA @@@@@'//(00@ s  [Genarray.create kind layout dimensions] returns a new Bigarray whose element kind is determined by the parameter [kind] (one of [float32], [float64], [int8_signed], etc) and whose layout is determined by the parameter [layout] (one of [c_layout] or [fortran_layout]). The [dimensions] parameter is an array of integers that indicate the size of the Bigarray in each dimension. The length of [dimensions] determines the number of dimensions of the Bigarray. For instance, [Genarray.create int32 c_layout [|4;6;8|]] returns a fresh Bigarray of 32-bit integers, in C layout, having three dimensions, the three dimensions being 4, 6 and 8 respectively. Bigarrays returned by [Genarray.create] are not initialized: the initial values of array elements is unspecified. [Genarray.create] raises [Invalid_argument] if the number of dimensions is not in the range 0 to 16 inclusive, or if one of the dimensions is negative. )00<34 @@@@@@@B@@@  @@@@@@$init{ >44>44@б@г $kind>44#>44'@А!a@T@3      @G@A&>44'>44@@А!b@T@2>443>44!@@@# @@@:>44"@@б@гd&layoutD>44.E>444@А!c@T@,P>44+Q>44-@@@ @@@3@@б@г栐%array`>44<a>44A@г=#intj>448k>44;@@ @@@L@@@@@@Q @@б@б@г%array>44J>44O@г]#int>44F>44I@@ @@@l@@@@@@q @@А!azu>44S>44U@@@ @@z@@гƠ!t?4Z4s?4Z4t@А!a?4Z4g?4Z4i@@А!b?4Z4k?4Z4m@@А!co?4Z4o?4Z4q@@@w@@@?4Z4f@@@+ @@>44E"@@@Z@@a%@@@{@@~(@@@@@+@@@>44.@ ^  [Genarray.init kind layout dimensions f] returns a new Bigarray [b] whose element kind is determined by the parameter [kind] (one of [float32], [float64], [int8_signed], etc) and whose layout is determined by the parameter [layout] (one of [c_layout] or [fortran_layout]). The [dimensions] parameter is an array of integers that indicate the size of the Bigarray in each dimension. The length of [dimensions] determines the number of dimensions of the Bigarray. Each element [Genarray.get b i] is initialized to the result of [f i]. In other words, [Genarray.init kind layout dimensions f] tabulates the results of [f] applied to the indices of a new Bigarray whose layout is described by [kind], [layout] and [dimensions]. The index array [i] may be shared and mutated between calls to f. For instance, [Genarray.init int c_layout [|2; 1; 3|] (Array.fold_left (+) 0)] returns a fresh Bigarray of integers, in C layout, having three dimensions (2, 1, 3, respectively), with the element values 0, 1, 2, 1, 2, 3. [Genarray.init] raises [Invalid_argument] if the number of dimensions is not in the range 0 to 16 inclusive, or if one of the dimensions is negative. @since 4.12 @4u4wX9|9@@@@@@@C@@>@ n@@@@@@(num_dims|Z99Z99@б@г#!tZ99Z99@А!a@T@3        @>@AZ99Z99@@А!b@T@Z99Z99@@А!c@T@(Z99)Z99@@@/% @@@#1Z99/@@г #int9Z99:Z99@@ @@@1@@@@@4@@0caml_ba_num_dimsAAd@@@HZ99IZ99@ Ԑ 8 Return the number of dimensions of the given Bigarray. V[99W[9:@@@@@@@oD@@@ k@@@@@@Y$dims}n]::o]::@б@г!ty]::-z]::.@А!a@T@3@xD@A]::!]::#@@А!b@T@]::%]::'@@А!c@ T@]::)]::+@@@/% @@@#]:: /@@г6%array]::6]::;@г#int]::2]::5@@ @@@;@@@@@@@ @@@&@@C @@@]::@ U } [Genarray.dims a] returns all dimensions of the Bigarray [a], as an array of integers of length [Genarray.num_dims a]. ^:<:>_::@@@@@@@E@@*@ e될@@@@@@b'nth_dim~a::a::@б@г!ta::a::@А!a@ T@ 3@>@Aa::a::@@А!b@ T@ a::a::@@А!c@ T@ a:: a::@@@/% @@@ #(a::/@@б@г#int2a::3a::@@ @@@ 3@@г#int?a::@a::@@ @@@ @@@@@@ C@@@)@@ F# @@+caml_ba_dimBAm@@@@Ra::Sa:;@ ސ Q [Genarray.nth_dim a n] returns the [n]-th dimension of the Bigarray [a]. The first dimension corresponds to [n = 0]; the second dimension corresponds to [n = 1]; the last dimension, to [n = Genarray.num_dims a - 1]. @raise Invalid_argument if [n] is less than 0 or greater or equal than [Genarray.num_dims a]. `b;;ag<=<[@@@@@@@yF@@@ u@@@@@@l$kindxi<]@A@ @@ @ @@А!b@ iT@ [@ @"@ @$@@А!c@ kT@ \@ @&@ @(@@@/% @@@ `#@ @/@@б@гj%array@ @3@ @8@г#int@ @/@ @2@@ @@@ a=@@@@@@ cB @@А!aKF@ @<@ @>@@@ P@@ dK@@@1@@ eN+@@3caml_ba_get_genericBA'@@@@ @ @ @ @V@  Read an element of a generic Bigarray. [Genarray.get a [|i1; ...; iN|]] returns the element of [a] whose coordinates are [i1] in the first dimension, [i2] in the second dimension, ..., [iN] in the [N]-th dimension. If [a] has C layout, the coordinates must be greater or equal than 0 and strictly less than the corresponding dimensions of [a]. If [a] has Fortran layout, the coordinates must be greater or equal than 1 and less or equal than the corresponding dimensions of [a]. If [N > 3], alternate syntax is provided: you can write [a.{i1, i2, ..., iN}] instead of [Genarray.get a [|i1; ...; iN|]]. (The syntax [a.{...}] with one, two or three coordinates is reserved for accessing one-, two- and three-dimensional arrays as described below.) @raise Invalid_argument if the array [a] does not have exactly [N] dimensions, or if the coordinates are outside the array bounds. @W@YDD@@@@@@@3K@@@/@@@@@@t#set2DD$3DD'@б@г^!t=DD6>DD7@А!a@ {T@ l3EDDEEEEE@E@AKDD*LDD,@@А!b@ }T@ mWDD.XDD0@@А!c@ T@ ncDD2dDD4@@@/% @@@ r#lDD)/@@б@г%arrayvDD?wDDD@гS#intDD;DD>@@ @@@ s=@@@@@@ uB @@б@А!aMHDDHDDJ@@гG$unitDDNDDR@@ @@@ vW@@@_@@ wZ@@@@@ x]& @@@C@@ y`=@@3caml_ba_set_genericCAˠ@@@@@DDDSDn@=  Assign an element of a generic Bigarray. [Genarray.set a [|i1; ...; iN|] v] stores the value [v] in the element of [a] whose coordinates are [i1] in the first dimension, [i2] in the second dimension, ..., [iN] in the [N]-th dimension. The array [a] must have exactly [N] dimensions, and all coordinates must lie inside the array bounds, as described for [Genarray.get]; otherwise, [Invalid_argument] is raised. If [N > 3], alternate syntax is provided: you can write [a.{i1, i2, ..., iN} <- v] instead of [Genarray.set a [|i1; ...; iN|] v]. (The syntax [a.{...} <- v] with one, two or three coordinates is reserved for updating one-, two- and three-dimensional arrays as described below.) DoDqGJGf@@@@@@@L@@@NԐ@@@@@@(sub_leftGhGsGhG{@б@г!tGhGGhG@А!a@ T@ 3@F@AGhG~GhG@@А!b@ T@ GhGGhG@@г(c_layoutGhGGhG@@ @@@ @@@1' @@@ %GhG}1@@б@г#intGhGGhG@@ @@@ 5@@б@г#int,GhG-GhG@@ @@@ D@@гZ!t9GhG:GhG@А!aWR@GhGAGhG@@А!bPYGGhGHGhG@@г(c_layoutQGhGRGhG@@ @@@ i@@@%re @@@ p^GhG%@@@3 @@ t6(@@@E@@ wH+@@@[@@ zU.@@+caml_ba_subCA@@@@@pGhGjqGG@  Extract a sub-array of the given Bigarray by restricting the first (left-most) dimension. [Genarray.sub_left a ofs len] returns a Bigarray with the same number of dimensions as [a], and the same dimensions as [a], except the first dimension, which corresponds to the interval [[ofs ... ofs + len - 1]] of the first dimension of [a]. No copying of elements is involved: the sub-array and the original array share the same storage space. In other terms, the element at coordinates [[|i1; ...; iN|]] of the sub-array is identical to the element at coordinates [[|i1+ofs; ...; iN|]] of the original array [a]. [Genarray.sub_left] applies only to Bigarrays in C layout. @raise Invalid_argument if [ofs] and [len] do not designate a valid sub-array of [a], that is, if [ofs < 0], or [len < 0], or [ofs + len > Genarray.nth_dim a 0]. ~GGK+KY@@@@@@@M@@@ @@@@@@)sub_rightK[KfK[Ko@б@г !tKqKKqK@А!a@ T@ 3@F@AKqKvKqKx@@А!b@ T@ KqKzKqK|@@г 3.fortran_layoutKqK~KqK@@ @@@ @@@1' @@@ %KqKu1@@б@г#intKqKKqK@@ @@@ 5@@б@г#intKqKKqK@@ @@@ D@@г!tKqKKqK@А!aWRKqKKqK@@А!bPYKqKKqK@@г ~.fortran_layoutKqKKqK@@ @@@ i@@@%re @@@ pKqK%@@@3 @@ t6(@@@E@@ wH+@@@[@@ zU.@@+caml_ba_subCAI@@@@@/K[K]0KK@  Extract a sub-array of the given Bigarray by restricting the last (right-most) dimension. [Genarray.sub_right a ofs len] returns a Bigarray with the same number of dimensions as [a], and the same dimensions as [a], except the last dimension, which corresponds to the interval [[ofs ... ofs + len - 1]] of the last dimension of [a]. No copying of elements is involved: the sub-array and the original array share the same storage space. In other terms, the element at coordinates [[|i1; ...; iN|]] of the sub-array is identical to the element at coordinates [[|i1; ...; iN+ofs|]] of the original array [a]. [Genarray.sub_right] applies only to Bigarrays in Fortran layout. @raise Invalid_argument if [ofs] and [len] do not designate a valid sub-array of [a], that is, if [ofs < 1], or [len < 0], or [ofs + len > Genarray.nth_dim a (Genarray.num_dims a - 1)]. =KK>O5O{@@@@@@@VN@@@R@@@@@@*slice_leftUO}OVO}O@б@г!t`OOaOO@А!a@ T@ 3hgghhhhh@F@AnOOoOO@@А!b@ T@ zOO{OO@@г +(c_layoutOOOO@@ @@@ @@@1' @@@ %OO1@@б@г!%arrayOOOO@гx#intOOOO@@ @@@ ?@@@@@@ D @@гؠ!tOOOO@А!aWROOOO@@А!bPYOOOO@@г v(c_layoutOOOO@@ @@@ i@@@%re @@@ pOO%@@@4 @@ t;(@@@X@@ wR+@@-caml_ba_sliceBA@@@@O}OOO@v ' Extract a sub-array of lower dimension from the given Bigarray by fixing one or several of the first (left-most) coordinates. [Genarray.slice_left a [|i1; ... ; iM|]] returns the 'slice' of [a] obtained by setting the first [M] coordinates to [i1], ..., [iM]. If [a] has [N] dimensions, the slice has dimension [N - M], and the element at coordinates [[|j1; ...; j(N-M)|]] in the slice is identical to the element at coordinates [[|i1; ...; iM; j1; ...; j(N-M)|]] in the original array [a]. No copying of elements is involved: the slice and the original array share the same storage space. [Genarray.slice_left] applies only to Bigarrays in C layout. @raise Invalid_argument if [M >= N], or if [[|i1; ... ; iM|]] is outside the bounds of [a]. OORS@@@@@@@O@@@ @@@@@@+slice_rightSS#SS.@б@г = N], or if [[|i1; ... ; iM|]] is outside the bounds of [a]. SSVV@@@@@@@P@@@BȐ@@@@@@$blitVVVV@б@г !tVVVV@А!a@ T@ 3@E@AVVVV@@А!b@ T@ VVVV@@А!c@ T@ VVVV@@@/% @@@ #VV/@@б@г 0!tVVVV@А!a94VVVV@@А!b2;VVVV@@А!c-B$VV%VV@@@M@5@@@ K-VV@@г⠐$unit5VV6VW@@ @@@ Y@@@@@ \@@@B@@ _< @@,caml_ba_blitBA c@@@@HVVIWW@Ԑ x Copy all elements of a Bigarray in another Bigarray. [Genarray.blit src dst] copies all elements of [src] into [dst]. Both arrays [src] and [dst] must have the same number of dimensions and equal dimensions. Copying a sub-array of [src] to a sub-array of [dst] can be achieved by applying [Genarray.blit] to sub-array or slices of [src] and [dst]. VWWWXeX@@@@@@@oQ@@@k@@@@@@$fillnXXoXX@б@г !tyXXzXX@А!a@ T@ 3@E@AXXXX@@А!b@ T@ XXXX@@А!c@ T@ XXXX@@@/% @@@ #XX/@@б@А!a/*XXXX@@гe$unitXXXX@@ @@@ 9@@@A@@ <@@@"@@ ? @@,caml_ba_fillBA @@@@XXXX@W  Set all elements of a Bigarray to a given value. [Genarray.fill a v] stores the value [v] in all elements of the Bigarray [a]. Setting only some elements of [a] to [v] can be achieved by applying [Genarray.fill] to a sub-array or a slice of [a]. XXYY@@@@@@@R@@@h@@@@@@e@  A@  @  @@+@ @#@@@@c@X@0@s@$@k@D@I@@3        @K@A' L,,YY@@@, , @ Q@)(= {1 Zero-dimensional arrays} %YY&YZ@@@@@@3$##$$$$$@ d ^@ R A@  Q@ ( `@ @@m@M@e@?@;@@<@@r@ @f@?@ @@@@< }@A+&Array0TY [[Z [[@r`@@БA+!tUh [[i [[@А!a@ 3onnooooo@L;@@ @@ @@ @C@A@GGG@BBB@@@ [[@ The type of zero-dimensional Bigarrays whose elements have OCaml type ['a], representation kind ['b], and memory layout ['c]. [[[\9@@@@@@@@@T@@A [[ [[@@ А!b@ / [[ [[@@ А!c@ : [[ [[@@ @;B @C A@OOO@BBB@@@42@@$@@A@4Cɐ32@22@@@2@2@@3@@A@]@&create\;\A\;\G@б@г$kind\;\R\;\V@А!a@ V@ 3@7@A\;\J\;\L@@А!b@ V@ \;\N\;\P@@@# @@@ \;\I"@@б@г %&layout\;\]\;\c@А!c@ V@ ,\;\Z\;\\@@@ @@@ 3@@г!t\;\t \;\u@А!aFA&\;\h'\;\j@@А!b?H-\;\l.\;\n@@А!c(O4\;\p5\;\r@@@ZM0@@@ X=\;\g@@@- @@ \0!@@@N@@ _I$@@@F\;\='@ѐ [Array0.create kind layout] returns a new Bigarray of zero dimension. [kind] and [layout] determine the array element kind and the array layout as described for {!Genarray.create}. S\v\xT] ]=@@@@@@@lU@@7@g@@@@@@~$initj]?]Ek]?]I@б@г$kindu]?]Tv]?]X@А!a@ (V@ 3}||}}}}}@>@A]?]L]?]N@@А!b@ *V@ ]?]P]?]R@@@# @@@ ]?]K"@@б@г &layout]?]_]?]e@А!c@ ,V@ ,]?]\]?]^@@@ @@@ 3@@б@А!a>9]?]i]?]k@@г[!t]?]|]?]}@А!aNI]?]p]?]r@@А!bGP]?]t]?]v@@А!c0W]?]x]?]z@@@bU8@@@ #`]?]o@@@i @@ $d+!@@@8@@ %g;$@@@Y@@ &jT'@@@]?]A*@x [Array0.init kind layout v] behaves like [Array0.create kind layout] except that the element is additionally initialized to the value [v]. @since 4.12 ]~]^^(@@@@@@@V@@:@@@@@@@$kind^*^5^*^9@б@г!t^*^H^*^I@А!a@ 9V@ -3$##$$$$$@>@A*^*^<+^*^>@@А!b@ ;V@ .6^*^@7^*^B@@А!c@ =V@ /B^*^DC^*^F@@@/% @@@ 3#K^*^;/@@г$kindS^*^VT^*^Z@А!a72Z^*^N[^*^P@@А!b09a^*^Rb^*^T@@@D7@@@ 6Ai^*^M@@@( @@ 7E"@@,caml_ba_kindAA @@@s^*^,t^*^k@ ( Return the kind of the given Bigarray. ^l^n^l^@@@@@@@W@@@@@@@@@j&layout^^^^@б@г3@D@A^^^^@@А!b@ KV@ ?^^^^@@А!c@ MV@ @^^^^@@@/% @@@ D#^^/@@г&layout^^^^@А!c2^^^^@@@#@@@ F9 @@@@@ G<@@.caml_ba_layoutAA @@@^^^^@~ * Return the layout of the given Bigarray.  ^^ ^_@@@@@@@X@@@@@@@@@a-change_layout"__"__%@б@г!t#"__4$"__5@А!a@ _V@ N3+**+++++@D@A1"__(2"__*@@А!b@ aV@ O="__,>"__.@@А!c@ cV@ PI"__0J"__2@@@/% @@@ T#R"__'/@@б@г|&layout\"__<]"__B@А!d@ eV@ U9h"__9i"__;@@@ @@@ W@@@г!tv"__Sw"__T@А!aSN}"__G~"__I@@А!bLU"__K"__M@@А!d(\"__O"__Q@@@gZ0@@@ [e"__F@@@- @@ \i0!@@@O@@ ]lI$@@@"__'@( [Array0.change_layout a layout] returns a Bigarray with the specified [layout], sharing the data with [a]. No copying of elements is involved: the new array and the original array share the same storage space. @since 4.06 #_U_W)`R`V@@@@@@@Y@@7@8@@@@@@-size_in_bytes+`X`^+`X`k@б@гd!t+`X`{+`X`|@А!a@ pV@ f3@>@A+`X`o+`X`q@@А!b@ rV@ g+`X`s+`X`u@@А!c@ tV@ h+`X`w+`X`y@@@/% @@@ l#+`X`n/@@г֠#int+`X`+`X`@@ @@@ m1@@@@@ n4@@@+`X`Z @ 3 [size_in_bytes a] is [a]'s {!kind_size_in_bytes}. ,``,``@@@@@@@4Z@@@/@@@@@@S#get2.``3.``@б@гՠ!t=.``>.``@А!a@ ~V@ u3EDDEEEEE@r>@AK.``L.``@@А!b@ V@ vW.``X.``@@А!c@ V@ wc.``d.``@@@/% @@@ {#l.``/@@А!a-(q.``r.``@@@2@@ |- @@@x.``@ 1 [Array0.get a] returns the only element in [a]. /``/`a@@@@@@@[@@@@@@@@@L#set1aa 1aa#@б@г?!t1aa21aa3@А!a@ V@ 3@k>@A1aa&1aa(@@А!b@ V@ 1aa*1aa,@@А!c@ V@ 1aa.1aa0@@@/% @@@ #1aa%/@@б@А!a/*1aa71aa9@@г$unit1aa=1aaA@@ @@@ 9@@@A@@ <@@@"@@ ? @@@1aa@ 1 [Array0.set a x v] stores the value [v] in [a]. 2aBaD2aBaz@@@@@@@\@@@@@@@@@^$blit4a|a4a|a@б@г!t#4a|a$4a|a@А!a@ V@ 3+**+++++@}>@A14a|a24a|a@@А!b@ V@ =4a|a>4a|a@@А!c@ V@ I4a|aJ4a|a@@@/% @@@ #R4a|a/@@б@г!t\4a|a]4a|a@А!a94c4a|ad4a|a@@А!b2;j4a|ak4a|a@@А!c-Bq4a|ar4a|a@@@M@5@@@ Kz4a|a@@г/$unit4a|a4a|a@@ @@@ Y@@@@@ \@@@B@@ _< @@,caml_ba_blitBA@@@@4a|a~4a|a@! ] Copy the first Bigarray to the second Bigarray. See {!Genarray.blit} for more details. 5aa6ab+@@@@@@@]@@@2@@@@@@$fill8b-b88b-b<@б@г^!t8b-bK8b-bL@А!a@ V@ 3@E@A8b-b?8b-bA@@А!b@ V@ 8b-bC8b-bE@@А!c@ V@ 8b-bG8b-bI@@@/% @@@ #8b-b>/@@б@А!a/*8b-bP8b-bR@@г$unit8b-bV8b-bZ@@ @@@ 9@@@A@@ <@@@"@@ ? @@,caml_ba_fillBA3@@@@8b-b/8b-bk@ [ Fill the given Bigarray with the given value. See {!Genarray.fill} for more details. &9blbn':bb@@@@@@@?^@@@;@@@@@@e(of_value><bb?<bb@б@г$kindI<bbJ<bb@А!a@ V@ 3QPPQQQQQ@E@AW<bbX<bb@@А!b@ V@ c<bbd<bb@@@# @@@ k<bb"@@б@г&layoutu<bbv<bb@А!c@ V@ ,<bb<bb@@@ @@@ 3@@б@А!a>9<bb<bc@@г/!t<bc<bc@А!aNI<bc<bc@@А!bGP<bc <bc @@А!c0W<bc <bc@@@bU8@@@ `<bc@@@i @@ d+!@@@8@@ g;$@@@Y@@ jT'@@@<bb*@L K Build a zero-dimensional Bigarray initialized from the given value. =cc>cPce@@@@@@@_@@:@\␠@@@@@@@{0A@@}@x@R@N@.@w@W@c@<@6@@3@8@AѰ [[@cgcj@@ d Zero-dimensional arrays. The [Array0] structure provides operations similar to those of {!Bigarray.Genarray}, but specialized to the case of zero-dimensional arrays that only contain a single scalar value. Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking. @since 4.05  ZZ  [o[@@@@@@@  [[@@  < {1 One-dimensional arrays}  Ccmcm Ccmc@@@@@@3        @@uA@\@=@@@@@s$@@B@"@'@{@@Đ>=@==@@@=@=@:@A)&Array1V NLe<eC OLe<eI@ gr@@БA+!tW ]MePeg ^MePeh@А!a@ 3 d c c d d d d d@J;@@ ̠@@ ͠@@ @C@A@GGG@BBB@@@ {MePeR@ The type of one-dimensional Bigarrays whose elements have OCaml type ['a], representation kind ['b], and memory layout ['c].  Neiek Oee@@@@@@@@@ a@@A MePeY MePe[@@~А!b@ / MePe^ MePe`@@А!c@ : MePec MePee@@@;B @C}A@OOO@BBB@@@42@@$@@A@48 32@22@@@2@2@@3        @@A@]@&create Qee Qef@б@гt$kind Qef  Qef@А!a@ X@ 3        @7@A Qef Qef@@А!b@ X@  Qef Qef @@@# @@@  Qef"@@б@г&layout Qef Qef@А!c@ X@ ,!Qef!Qef@@@ @@@ 3@@б@г 預#int!Qef!!Qef$@@ @@@ B@@гƠ!t!#Qef5!$Qef6@А!aUP!*Qef)!+Qef+@@А!bNW!1Qef-!2Qef/@@А!c7^!8Qef1!9Qef3@@@i\?@@@ g!AQef(@@@, @@ k/!@@@?@@ nB$@@@`@@ q['@@@!MQee*@ؐ [Array1.create kind layout dim] returns a new Bigarray of one dimension, whose size is [dim]. [kind] and [layout] determine the array element kind and the array layout as described for {!Genarray.create}. !ZRf7f9![Ufg@@@@@@@!sb@@:@!n@@@@@@$init!qWgg$!rWgg(@б@г"$kind!|Wgg3!}Wgg7@А!a@ X@ 3!!!!!!!!@>@A!Wgg+!Wgg-@@А!b@ X@ !Wgg/!Wgg1@@@# @@@ !Wgg*"@@б@гȠ&layout!Wgg>!WggD@А!c@ X@ ,!Wgg;!Wgg=@@@ @@@ 3@@б@г!#int!WggH!WggK@@ @@@ B@@б@б@г!#int!WggP!WggS@@ @@@ S@@А!a\W!WggW!WggY@@@ a@@ \@@г!t!Xg^gw!Xg^gx@А!aoj!Xg^gk!Xg^gm@@А!bhq!Xg^go!Xg^gq@@А!cQx"Xg^gs"Xg^gu@@@vY@@@ " Xg^gj@@@+ @@ " WggO"@@@J@@ M%@@@]@@ `(@@@~@@ y+@@@"Wgg .@  [Array1.init kind layout dim f] returns a new Bigarray [b] of one dimension, whose size is [dim]. [kind] and [layout] determine the array element kind and the array layout as described for {!Genarray.create}. Each element [Array1.get b i] of the array is initialized to the result of [f i]. In other words, [Array1.init kind layout dimensions f] tabulates the results of [f] applied to the indices of a new Bigarray whose layout is described by [kind], [layout] and [dim]. @since 4.12 "&Ygyg{"'eii@@@@@@@"?c@@>@":@@@@@@#dim"=gii">gii@б@г렐!t"Hgii"Igii@А!a@ X@ 3"P"O"O"P"P"P"P"P@>@A"Vgii"Wgii@@А!b@ X@ "bgii"cgii@@А!c@ X@ "ngii"ogii@@@/% @@@ #"wgii/@@г"R#int"gii"gii@@ @@@ 1@@@@@ 4@@.%caml_ba_dim_1AA@@@"gii"gii@ I Return the size (dimension) of the given one-dimensional Bigarray. "hii"ijj"@@@@@@@"d@@@+"@@@@@@Y$kind"kj$j/"kj$j3@б@гb!t"kj$jB"kj$jC@А!a@ "X@ 3""""""""@xD@A"kj$j6"kj$j8@@А!b@ $X@ "kj$j:"kj$j<@@А!c@ &X@ "kj$j>"kj$j@@@@/% @@@ #"kj$j5/@@г$kind"kj$jP"kj$jT@А!a72"kj$jH"kj$jJ@@А!b09#kj$jL#kj$jN@@@D7@@@ A# kj$jG@@@( @@ E"@@,caml_ba_kindAA2@@@#kj$j&#kj$je@ ( Return the kind of the given Bigarray. #$ljfjh#%ljfj@@@@@@@#=e@@@#9@@@@@@j&layout#<njj#=njj@б@гꠐ!t#Gnjj#Hnjj@А!a@ 2X@ '3#O#N#N#O#O#O#O#O@D@A#Unjj#Vnjj@@А!b@ 4X@ (#anjj#bnjj@@А!c@ 6X@ )#mnjj#nnjj@@@/% @@@ -##vnjj/@@г&layout#~njj#njj@А!c2#njj#njj@@@#@@@ /9 @@@@@ 0<@@.caml_ba_layoutAA@@@#njj#njj@ ! * Return the layout of the given Bigarray. #ojj#ojk @@@@@@@#f@@@ 2#@@@@@@a-change_layout#qk k#qk k@б@гi!t#qk k.#qk k/@А!a@ HX@ 73########@D@A#qk k"#qk k$@@А!b@ JX@ 8#qk k&#qk k(@@А!c@ LX@ 9#qk k*#qk k,@@@/% @@@ =##qk k!/@@б@г&layout#qk k6$qk k<@А!d@ NX@ >9$ qk k3$ qk k5@@@ @@@ @@@@г!t$qk kM$qk kN@А!aSN$ qk kA$!qk kC@@А!bLU$'qk kE$(qk kG@@А!d(\$.qk kI$/qk kK@@@gZ0@@@ De$7qk k@@@@- @@ Ei0!@@@O@@ FlI$@@@$@qk k'@ ː ' [Array1.change_layout a layout] returns a Bigarray with the specified [layout], sharing the data with [a] (and hence having the same dimension as [a]). No copying of elements is involved: the new array and the original array share the same storage space. @since 4.06 $MrkOkQ$Nxlyl}@@@@@@@$fg@@7@ $a@@@@@@-size_in_bytes$d{ll$e{ll@б@г!t$o{ll$p{ll@А!a@ YX@ O3$w$v$v$w$w$w$w$w@>@A$}{ll$~{ll@@А!b@ [X@ P${ll${ll@@А!c@ ]X@ Q${ll${ll@@@/% @@@ U#${ll/@@г$y#int${ll${ll@@ @@@ V1@@@@@ W4@@@${ll @!< t [size_in_bytes a] is the number of elements in [a] multiplied by [a]'s {!kind_size_in_bytes}. @since 4.03 $|ll$mm'@@@@@@@$h@@@!L$Ґ@@@@@@S#get$m)m4$m)m7@б@г!t$m)mF$m)mG@А!a@ iX@ ^3$$$$$$$$@r>@A$m)m:$m)m<@@А!b@ kX@ _$m)m>$m)m@@@А!c@ mX@ `%m)mB%m)mD@@@/% @@@ d#%m)m9/@@б@г$점#int%m)mK%m)mN@@ @@@ e3@@А!a<7%#m)mR%$m)mT@@@ A@@ f<@@@"@@ g?@@.%caml_ba_ref_1BAM@@@@%2m)m+%3m)mg@! c [Array1.get a x], or alternatively [a.{x}], returns the element of [a] at index [x]. [x] must be greater or equal than [0] and strictly less than [Array1.dim a] if [a] has C layout. If [a] has Fortran layout, [x] must be greater or equal than [1] and less or equal than [Array1.dim a]. Otherwise, [Invalid_argument] is raised. %@mhmj%Ann@@@@@@@%Yi@@@!%U@@@@@@e#set%Xnn%Ynn@б@г!t%cnn%dnn@А!a@ {X@ n3%k%j%j%k%k%k%k%k@E@A%qnn%rnn@@А!b@ }X@ o%}nn%~nn@@А!c@ X@ p%nn%nn@@@/% @@@ t#%nn/@@б@г%o#int%nn%nn@@ @@@ u3@@б@А!a>9%nn%nn@@г%^$unit%no%no@@ @@@ vH@@@P@@ wK@@@@@ xN! @@@4@@ yQ.@@.%caml_ba_set_1CA@@@@@%nn%no@"T [Array1.set a x v], also written [a.{x} <- v], stores the value [v] at index [x] in [a]. [x] must be inside the bounds of [a] as described in {!Bigarray.Array1.get}; otherwise, [Invalid_argument] is raised. %oo%op@@@@@@@%j@@@"e%될@@@@@@x#sub%pp%pp@б@г!t%pp%%pp&@А!a@ X@ 3&&&&&&&&@F@A&pp&pp@@А!b@ X@ &pp&pp@@А!c@ X@ &pp!& pp#@@@/% @@@ #&(pp/@@б@г&#int&2pp*&3pp-@@ @@@ 3@@б@г&#int&App1&Bpp4@@ @@@ B@@г!t&NppE&OppF@А!aUP&Upp9&Vpp;@@А!bNW&\pp=&]pp?@@А!cI^&cppA&dppC@@@i\Q@@@ g&lpp8@@@, @@ k/!@@@>@@ nA$@@@T@@ qN'@@+caml_ba_subCA@@@@@&~pp &pGp\@# l Extract a sub-array of the given one-dimensional Bigarray. See {!Genarray.sub_left} for more details. &p]p_&pp@@@@@@@&k@@@#&@@@@@@%slice&pp&pp@б@гR!t&pp&pp@А!a@ X@ 3&&&&&&&&@F@A&pp&pp@@А!b@ X@ &pp&pp@@А!c@ X@ &pp&pp@@@/% @@@ #&pp/@@б@г&#int&pp&pp@@ @@@ 3@@г !t&Array0&pq&pq @ &pq &pq @@А!aOJ'pp'pp@@А!bHQ' pp' pp@@А!cCX'pq'pq@@@'cVK@@@ a'pp@@@5 @@ e8"@@@K@@ hE%@@@'%pp(@#  Extract a scalar (zero-dimensional slice) of the given one-dimensional Bigarray. The integer parameter is the index of the scalar to extract. See {!Bigarray.Genarray.slice_left} and {!Bigarray.Genarray.slice_right} for more details. @since 4.05 '2qq'3rr!@@@@@@@'Kl@@8@#'F@@@@@@$blit'Ir#r.'Jr#r2@б@г!t'Tr#rA'Ur#rB@А!a@ X@ 3'\'['['\'\'\'\'\@>@A'br#r5'cr#r7@@А!b@ X@ 'nr#r9'or#r;@@А!c@ X@ 'zr#r='{r#r?@@@/% @@@ #'r#r4/@@б@г0!t'r#rS'r#rT@А!a94'r#rG'r#rI@@А!b2;'r#rK'r#rM@@А!c-B'r#rO'r#rQ@@@M@5@@@ K'r#rF@@г'`$unit'r#rX'r#r\@@ @@@ Y@@@@@ \@@@B@@ _< @@,caml_ba_blitBA@@@@'r#r%'r]rs@$R ] Copy the first Bigarray to the second Bigarray. See {!Genarray.blit} for more details. 'rtrv'rr@@@@@@@'m@@@$c'鐠@@@@@@$fill'rr'rr@б@г!t'rr'rr@А!a@ X@ 3''''''''@E@A(rr(rr@@А!b@ X@ (rr(rr@@А!c@ X@ (rr(rr@@@/% @@@ #(&rr/@@б@А!a/*(-rr(.rr@@г'㠐$unit(6rs(7rs@@ @@@ 9@@@A@@ <@@@"@@ ? @@,caml_ba_fillBAd@@@@(Irr(Jrs@$Ր [ Fill the given Bigarray with the given value. See {!Genarray.fill} for more details. (Wss(XsMs{@@@@@@@(pn@@@$(l@@@@@@e(of_array(os}s(ps}s@б@г% $kind(zs}s({s}s@А!a@ X@ 3((((((((@E@A(s}s(s}s@@А!b@ X@ (s}s(s}s@@@# @@@ (s}s"@@б@гƠ&layout(s}s(s}s@А!c@ X@ ,(s}s(s}s@@@ @@@ 3@@б@г(H%array(s}s(s}s@А!aHC(s}s(s}s@@@N@@@ J @@гz!t(s}s(s}s@А!a]X(s}s(s}s@@А!bV_(s}s(s}s@@А!c?f(s}s(s}s@@@qdG@@@ o(s}s@@@- @@ s0!@@@G@@ vJ$@@@h@@ yc'@@@)s}s*@% J Build a one-dimensional Bigarray initialized from the given array. )ss)tt@@@@@@@)'o@@:@%)"@@@@@@*unsafe_get)%tt$)&tt.@б@гӠ!t)0tt=)1tt>@А!a@ X@ 3)8)7)7)8)8)8)8)8@>@A)>tt1)?tt3@@А!b@ X@ )Jtt5)Ktt7@@А!c@ "X@ )Vtt9)Wtt;@@@/% @@@ #)_tt0/@@б@г)<#int)ittB)jttE@@ @@@ 3@@А!a<7)sttI)tttK@@@ A@@ <@@@"@@ ?@@5%caml_ba_unsafe_ref_1BA@@@@)tt)tte@& Like {!Bigarray.Array1.get}, but bounds checking is not always performed. Use with caution and only when the program logic guarantees that the access is within bounds. )tfth)tu"@@@@@@@)p@@@&)@@@@@@e*unsafe_set)u$u/)u$u9@б@г V!t)u$uH)u$uI@А!a@ 0X@ #3))))))))@E@A)u$u<)u$u>@@А!b@ 2X@ $)u$u@)u$uB@@А!c@ 4X@ %)u$uD)u$uF@@@/% @@@ )#)u$u;/@@б@г)#int)u$uM)u$uP@@ @@@ *3@@б@А!a>9)u$uT)u$uV@@г)$unit*u$uZ*u$u^@@ @@@ +H@@@P@@ ,K@@@@@ -N! @@@4@@ .Q.@@5%caml_ba_unsafe_set_1CA2@@@@@*u$u&*u_u@& Like {!Bigarray.Array1.set}, but bounds checking is not always performed. Use with caution and only when the program logic guarantees that the access is within bounds. *&uu*'v%vJ@@@@@@@*?q@@@&*;@@@@@@x@  A@ {@%@@0@ @@@w@@b@+@ @j@U@5@H@@3*U*T*T*U*U*U*U*U@J@A% =*\Le<eL*]vLvO@@&*n  One-dimensional arrays. The [Array1] structure provides operations similar to those of {!Bigarray.Genarray}, but specialized to the case of one-dimensional arrays. (The {!Array2} and {!Array3} structures below provide operations specialized for two- and three-dimensional arrays.) Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking. *kEcc*lKde;@@@@@@@*nLe<e<@ Q@**< {1 Two-dimensional arrays} *vRvR*vRvs@@@@@@3*~*}*}*~*~*~*~*~@ d :@ . A@  >@ t@T@@Y@U@5@l@E@%@z@Z@_@8@*@@@'1HG@GG@@@G@G@D a@A3&Array2X*w&w-*w&w3@*@@БA+!tY*w<wS*w<wT@А!a@ 83********@T;@@ 5@@ 6@@ 7@C@A@GGG@BBB@@@*w<w>@'s The type of two-dimensional Bigarrays whose elements have OCaml type ['a], representation kind ['b], and memory layout ['c]. *wUwW*ww@@@@@@@@@+s@@A*w<wE*w<wG@@렠А!b@ 9/+w<wJ+w<wL@@А!c@ ::+w<wO+w<wQ@@@;B @CA@OOO@BBB@@@42@@$@@A@4'++32@22@@@2@2@@3+#+"+"+#+#+#+#+#@@A@]@&create+0ww+1ww@б@г'᠐$kind+;ww+<ww@А!a@ TZ@ A3+C+B+B+C+C+C+C+C@7@A+Iww+Jww@@А!b@ VZ@ B+Uww+Vww@@@# @@@ E+]ww"@@б@г&layout+gwx+hwx @А!c@ XZ@ F,+swx+twx@@@ @@@ H3@@б@г+V#int+wx+wx@@ @@@ IB@@б@г+e#int+wx+wx@@ @@@ JQ@@гՠ!t+wx)+wx*@А!ad_+wx+wx@@А!b]f+wx!+wx#@@А!cFm+wx%+wx'@@@xkN@@@ Nv+wx@@@, @@ Oz/!@@@>@@ P}A$@@@Q@@ QT'@@@r@@ Rm*@@@+ww-@(W . [Array2.create kind layout dim1 dim2] returns a new Bigarray of two dimensions, whose size is [dim1] in the first dimension and [dim2] in the second dimension. [kind] and [layout] determine the array element kind and the array layout as described for {!Bigarray.Genarray.create}. +x+x-+y+y`@@@@@@@+t@@=@(g+퐠@@@@@@$init+ybyh+ybyl@б@г($kind+ybyw+yby{@А!a@ qZ@ Y3,,,,,,,,@>@A, ybyo, ybyq@@А!b@ sZ@ Z,ybys,ybyu@@@# @@@ ],ybyn"@@б@гG&layout,'yby,(yby@А!c@ uZ@ ^,,3yby,4yby@@@ @@@ `3@@б@г,#int,Cyby,Dyby@@ @@@ aB@@б@г,%#int,Ryby,Syby@@ @@@ bQ@@б@б@г,6#int,cyy,dyy@@ @@@ cb@@б@г,E#int,ryy,syy@@ @@@ dq@@А!azu,|yy,}yy@@@ @@ ez@@@@@ f}!@@г!t,yy,yy@А!a,yy,yy@@А!b,yy,yy@@А!cr,yy,yy@@@z@@@ j,yy@@@+ @@ k,yy"@@@\@@ l_%@@@n@@ mq(@@@@@ n+@@@@@ o.@@@,ybyd1@)G s [Array2.init kind layout dim1 dim2 f] returns a new Bigarray [b] of two dimensions, whose size is [dim2] in the first dimension and [dim2] in the second dimension. [kind] and [layout] determine the array element kind and the array layout as described for {!Bigarray.Genarray.create}. Each element [Array2.get b i j] of the array is initialized to the result of [f i j]. In other words, [Array2.init kind layout dim1 dim2 f] tabulates the results of [f] applied to the indices of a new Bigarray whose layout is described by [kind], [layout], [dim1] and [dim2]. @since 4.12 ,yy,|3|F@@@@@@@,u@@A@)W,ݐ@@@@@@$dim1,|H|S,|H|W@б@г!!t,|H|f,|H|g@А!a@ Z@ v3,,,,,,,,@ >@A,|H|Z,|H|\@@А!b@ Z@ w-|H|^-|H|`@@А!c@ Z@ x-|H|b-|H|d@@@/% @@@ |#-|H|Y/@@г,#int-"|H|k-#|H|n@@ @@@ }1@@@@@ ~4@@.%caml_ba_dim_1AAM@@@-1|H|J-2|H|@) C Return the first dimension of the given two-dimensional Bigarray. -?||-@||@@@@@@@-Xv@@@)-T@@@@@@Y$dim2-W||-X||@б@г!t-b||-c||@А!a@ Z@ 3-j-i-i-j-j-j-j-j@xD@A-p||-q||@@А!b@ Z@ -|||-}||@@А!c@ Z@ -||-||@@@/% @@@ #-||/@@г-l#int-||-||@@ @@@ 1@@@@@ 4@@.%caml_ba_dim_2AAĠ@@@-||-|}@*4 D Return the second dimension of the given two-dimensional Bigarray. -}} -}}S@@@@@@@-w@@@*E-ː@@@@@@Y$kind-}U}`-}U}d@б@г!t-}U}s-}U}t@А!a@ Z@ 3--------@xD@A-}U}g-}U}i@@А!b@ Z@ -}U}k-}U}m@@А!c@ Z@ -}U}o.}U}q@@@/% @@@ #.}U}f/@@г*$kind.}U}.}U}@А!a72.}U}y.}U}{@@А!b09.}U}}.}U}@@@D7@@@ A.&}U}x@@@( @@ E"@@,caml_ba_kindAAL@@@.0}U}W.1}U}@* ( Return the kind of the given Bigarray. .>}}.?}}@@@@@@@.Wx@@@*.S@@@@@@j&layout.V}}.W}}@б@г!t.a}}.b}}@А!a@ Z@ 3.i.h.h.i.i.i.i.i@D@A.o}}.p}}@@А!b@ Z@ .{}}.|}}@@А!c@ Z@ .}}.}}@@@/% @@@ #.}}/@@г!&layout.}}.}}@А!c2.}}.}}@@@#@@@ 9 @@@@@ <@@.caml_ba_layoutAAˠ@@@.}}.}~ @+; * Return the layout of the given Bigarray. .~ ~ .~ ~;@@@@@@@.y@@@+L.Ґ@@@@@@a-change_layout.~=~C.~=~P@б@г!t.~=~_.~=~`@А!a@ Z@ 3........@D@A.~=~S.~=~U@@А!b@ Z@ .~=~W.~=~Y@@А!c@ Z@ /~=~[/~=~]@@@/% @@@ #/~=~R/@@б@г"9&layout/~=~g/~=~m@А!d@ Z@ 9/%~=~d/&~=~f@@@ @@@ @@@гi!t/3~=~~/4~=~@А!aSN/:~=~r/;~=~t@@А!bLU/A~=~v/B~=~x@@А!d(\/H~=~z/I~=~|@@@gZ0@@@ e/Q~=~q@@@- @@ i0!@@@O@@ lI$@@@/Z~=~?'@+吠  [Array2.change_layout a layout] returns a Bigarray with the specified [layout], sharing the data with [a] (and hence having the same dimensions as [a]). No copying of elements is involved: the new array and the original array share the same storage space. The dimensions are reversed, such that [get v [| a; b |]] in C layout becomes [get v [| b+1; a+1 |]] in Fortran layout. @since 4.06 /g~~/h/3@@@@@@@/z@@7@+/{@@@@@@-size_in_bytes/~6</6I@б@г!t/6Y/6Z@А!a@ Z@ 3////////@>@A/6M/6O@@А!b@ Z@ /6Q/6S@@А!c@ Z@ /6U/6W@@@/% @@@ #/6L/@@г/#int/6^/6a@@ @@@ 1@@@@@ 4@@@/68 @,V t [size_in_bytes a] is the number of elements in [a] multiplied by [a]'s {!kind_size_in_bytes}. @since 4.03 /bd/@@@@@@@/{@@@,f/쐠@@@@@@S#get//@б@г0!t//@А!a@ Z@ 300000000@r>@A00 @@А!b@ Z@ 00@@А!c@ Z@ 0 0!@@@/% @@@ #0)/@@б@г0#int0304@@ @@@ 3@@б@г0#int0B0C @@ @@@ B@@А!aKF0L0M@@@ P@@ K@@@@@ N!@@@4@@ Q. @@.%caml_ba_ref_2CA!y@@@@@0_0`$@,될 [Array2.get a x y], also written [a.{x,y}], returns the element of [a] at coordinates ([x], [y]). [x] and [y] must be within the bounds of [a], as described for {!Bigarray.Genarray.get}; otherwise, [Invalid_argument] is raised. 0m%'0n%@@@@@@@0|@@@,0@@@@@@x#set0'20'5@б@гƠ!t0'D0'E@А!a@ Z@ 300000000@F@A0'80':@@А!b@ Z@ 0'<0'>@@А!c@ Z@ 0'@0'B@@@/% @@@ #0'7/@@б@г0#int0'I0'L@@ @@@ 3@@б@г0#int0'P0'S@@ @@@ B@@б@А!aMH0'W0'Y@@г0$unit0']0'a@@ @@@ W@@@_@@ Z@@@@@ ]! @@@0@@ `3@@@F@@ c@@@.%caml_ba_set_2DA"!@@@@@@1')1 't@-  [Array2.set a x y v], or alternatively [a.{x,y} <- v], stores the value [v] at coordinates ([x], [y]) in [a]. [x] and [y] must be within the bounds of [a], as described for {!Bigarray.Genarray.set}; otherwise, [Invalid_argument] is raised. 1uw1Q@@@@@@@1/}@@@-1+@@@@@@(sub_left1.1/@б@гo!t191:@А!a@ Z@ 31A1@1@1A1A1A1A1A@G@A1G1H@@А!b@ Z@ 1S1T@@г%(c_layout1]1^@@ @@@ @@@1' @@@ %1j1@@б@г1G#int1t1u@@ @@@ 5@@б@г1V#int11@@ @@@ D@@гƠ!t11@А!aWR11@@А!bPY11@@г%O(c_layout11@@ @@@ i@@@%re @@@ p1%@@@3 @@ t6(@@@E@@ wH+@@@[@@ zU.@@+caml_ba_subCA"@@@@@11@.S Extract a two-dimensional sub-array of the given two-dimensional Bigarray by restricting the first dimension. See {!Bigarray.Genarray.sub_left} for more details. [Array2.sub_left] applies only to arrays with C layout. 11 @@@@@@@1~@@@.d1ꐠ@@@@@@)sub_right1 1 @б@г.!t1 1@А!a@ )Z@ 321122222@F@A22@@А!b@ +Z@ 22@@г%.fortran_layout22 @@ @@@ @@@1' @@@ %2)1@@б@г2#int2324@@ @@@ 5@@б@г2#int2B2C@@ @@@ D@@г!t2O92P:@А!aWR2V!2W#@@А!bPY2]%2^'@@г%ՠ.fortran_layout2g)2h7@@ @@@ i@@@%re @@@ $p2t %@@@3 @@ %t6(@@@E@@ &wH+@@@[@@ 'zU.@@+caml_ba_subCA#@@@@@2 2;N@/ Extract a two-dimensional sub-array of the given two-dimensional Bigarray by restricting the second dimension. See {!Bigarray.Genarray.sub_right} for more details. [Array2.sub_right] applies only to arrays with Fortran layout. 2OQ2I@@@@@@@2@@@/#2@@@@@@*slice_left2KQ2K[@б@г!t2Kp2Kq@А!a@ Z@ ,322222222@F@A2K^2K`@@А!b@ Z@ -2Kb2Kd@@г&(c_layout2Kf2Kn@@ @@@ .@@@1' @@@ 2%2K]1@@б@г2Š#int2Ku2Kx@@ @@@ 35@@г!t&Array13K3K@ 3K3K@@А!aQL3K}3K@@А!bJS3K3K@@г&Ǡ(c_layout3 K3!K@@ @@@ c@@@.l_ @@@ j3-K|&@@@< @@ n?)@@@R@@ qL,@@@36KM/@/  Extract a row (one-dimensional slice) of the given two-dimensional Bigarray. The integer parameter is the index of the row to extract. See {!Bigarray.Genarray.slice_left} for more details. [Array2.slice_left] applies only to arrays with C layout. 3C3Dg@@@@@@@3\@@?@/3W@@@@@@+slice_right3Z3[@б@г!t3e3f@А!a@ Z@ 33m3l3l3m3m3m3m3m@>@A3s3t@@А!b@ Z@ 33@@г&.fortran_layout33@@ @@@ @@@1' @@@ %31@@б@г3s#int33@@ @@@ 5@@гa!t&Array133@ 33@@А!aQL33@@А!bJS33@@г'<.fortran_layout33@@ @@@ c@@@.l_ @@@ j3&@@@< @@ n?)@@@R@@ qL,@@@3/@0o  Extract a column (one-dimensional slice) of the given two-dimensional Bigarray. The integer parameter is the index of the column to extract. See {!Bigarray.Genarray.slice_right} for more details. [Array2.slice_right] applies only to arrays with Fortran layout. 3 3!,@@@@@@@4 @@?@04@@@@@@$blit4#.94 #.=@б@г I!t4#.L4#.M@А!a@ Z@ 344444444@>@A4!#.@4"#.B@@А!b@ Z@ 4-#.D4.#.F@@А!c@ Z@ 49#.H4:#.J@@@/% @@@ #4B#.?/@@б@г !t4L#.^4M#._@А!a944S#.R4T#.T@@А!b2;4Z#.V4[#.X@@А!c-B4a#.Z4b#.\@@@M@5@@@ K4j#.Q@@г4$unit4r#.c4s#.g@@ @@@ Y@@@@@ \@@@B@@ _< @@,caml_ba_blitBA%@@@@4#.04$h|@1 f Copy the first Bigarray to the second Bigarray. See {!Bigarray.Genarray.blit} for more details. 4%}4&@@@@@@@4@@@1"4@@@@@@$fill4(4(@б@г 점!t4( 4( @А!a@ Z@ 344444444@E@A4(4(@@А!b@ Z@ 4(4(@@А!c@ Z@ 4(4(@@@/% @@@ #4(/@@б@А!a/*4(4(@@г4$unit4(4(@@ @@@ 9@@@A@@ <@@@"@@ ? @@,caml_ba_fillBA&#@@@@5(5 (*@1 d Fill the given Bigarray with the given value. See {!Bigarray.Genarray.fill} for more details. 5)+-5*_@@@@@@@5/@@@15+@@@@@@e(of_array5.,5/,@б@г1ߠ$kind59,5:,@А!a@ Z@ 35A5@5@5A5A5A5A5A@E@A5G,5H,@@А!b@ Z@ 5S,5T,@@@# @@@ 5[,"@@б@г(&layout5e,5f,@А!c@ Z@ ,5q,5r,@@@ @@@ 3@@б@г5%array5,5,@г5%array5,5,@А!aRM5,5,@@@X@@@ T @@@@@@ Y @@г ۠!t5,5,@А!alg5,5,@@А!ben5,5,@@А!cNu5,5,@@@sV@@@ ~5,@@@- @@ 5!@@@V@@ Y$@@@w@@ r'@@@5,*@2Z T Build a two-dimensional Bigarray initialized from the given array of arrays. 5-5.#B@@@@@@@5@@:@2j5𐠠@@@@@@*unsafe_get50DO50DY@б@г 4!t50Dh50Di@А!a@ Z@ 366666666@>@A6 0D\6 0D^@@А!b@ Z@ 60D`60Db@@А!c@ Z@ 6$0Dd6%0Df@@@/% @@@ #6-0D[/@@б@г6 #int670Dm680Dp@@ @@@ 3@@б@г6#int6F0Dt6G0Dw@@ @@@ B@@А!aKF6P0D{6Q0D}@@@ P@@ K@@@@@ N!@@@4@@ Q. @@5%caml_ba_unsafe_ref_2CA'}@@@@@6c0DF6d1~@2 Q Like {!Bigarray.Array2.get}, but bounds checking is not always performed. 6q26r3@@@@@@@6@@@36@@@@@@x*unsafe_set6565@б@г ʠ!t65+65,@А!a@Z@ 366666666@F@A6565!@@А!b@Z@ 65#65%@@А!c@Z@ 65'65)@@@/% @@@ #65/@@б@г6#int650653@@ @@@ 3@@б@г6#int65765:@@ @@@ B@@б@А!aMH65>65@@@г6$unit65D65H@@ @@@ W@@@_@@ Z@@@@@ ]! @@@0@@ `3@@@F@@c@@@5%caml_ba_unsafe_set_2DA(%@@@@@@7 5 7 6Iw@3 Q Like {!Bigarray.Array2.set}, but bounds checking is not always performed. 77xz78@@@@@@@73@@@37/@@@@@@@ f A@  d@ D v@ V @  @ l @@i@s@S@A@@[@@f@F@K@$@a@O@@37O7N7N7O7O7O7O7O@Q@A+ ԰7Vw6w87W:@@37h Two-dimensional arrays. The [Array2] structure provides operations similar to those of {!Bigarray.Genarray}, but specialized to the case of two-dimensional arrays. 7evuvu7fww%@@@@@@@7hw&w&@ @7}7|> {1 Three-dimensional arrays} 7y<7z<@@@@@@37x7w7w7x7x7x7x7x@  @  pA@ W @  @  \@ 6 @  a@ ;@7@@<@@m@@g@G@!@@y@J@"@@41NM@MM@@@M@M@J @A9&Array3Z7A7A@7@@БA+!t[7C7C@А!a@ 377777777@Z;@@@@@@ @C@A@GGG@BBB@@@7C@4s The type of three-dimensional Bigarrays whose elements have OCaml type ['a], representation kind ['b], and memory layout ['c]. 7D7E"l@@@@@@@@@8@@A7C7C@@)렠А!b@ /8C8C@@)А!c@ :8C8C@@*@;B @C)A@OOO@BBB@@@42@@$@@A@448+32@22@@@2@2@@38#8"8"8#8#8#8#8#@@A@]@&create80Gnt81Gnz@б@г4᠐$kind8;Gn8<Gn@А!a@(\@38C8B8B8C8C8C8C8C@7@A8IGn}8JGn@@А!b@*\@8UGn8VGn@@@# @@@8]Gn|"@@б@г+&layout8gGn8hGn@А!c@,\@,8sGn8tGn@@@ @@@3@@б@г8V#int8Gn8Gn@@ @@@B@@б@г8e#int8Gn8Gn@@ @@@Q@@б@г8t#int8Gn8Gn@@ @@@`@@г䠐!t8Gn8Gn@А!asn8Gn8Gn@@А!blu8Gn8Gn@@А!cU|8Gn8Gn@@@z]@@@!8Gn@@@, @@"/!@@@>@@#A$@@@P@@$S'@@@c@@%f*@@@@@&-@@@8Gnp0@5i J [Array3.create kind layout dim1 dim2 dim3] returns a new Bigarray of three dimensions, whose size is [dim1] in the first dimension, [dim2] in the second dimension, and [dim3] in the third. [kind] and [layout] determine the array element kind and the array layout as described for {!Bigarray.Genarray.create}. 8H8L@@@@@@@9@@@@5y8@@@@@@$init 9N9N@б@г5$kind9 N&9N*@А!a@I\@-399999999@>@A9N9N @@А!b@K\@.9'N"9(N$@@@# @@@19/N"@@б@г,Y&layout99N29:N8@А!c@M\@2,9EN/9FN1@@@ @@@43@@б@г9(#int9UN<9VN?@@ @@@5B@@б@г97#int9dNC9eNF@@ @@@6Q@@б@г9F#int9sNJ9tNM@@ @@@7`@@б@б@г9W#int9OQ^9OQa@@ @@@8q@@б@г9f#int9OQe9OQh@@ @@@9@@б@г9u#int9OQl9OQo@@ @@@:@@А!a9OQs9OQu@@@ @@;@@@@@<!@@@0@@=3 @@г!t9OQ9OQ@А!a9OQ{9OQ}@@А!b9OQ9OQ@@А!c9OQ9OQ@@@Š@@@Að9OQz@@@+ @@Bǰ9OQ]"@@@n@@C˰q%@@@@@Dΰ(@@@@@EѰ+@@@@@F԰.@@@@@Gװ1@@@9N4@6}  [Array3.init kind layout dim1 dim2 dim3 f] returns a new Bigarray [b] of three dimensions, whose size is [dim1] in the first dimension, [dim2] in the second dimension, and [dim3] in the third. [kind] and [layout] determine the array element kind and the array layout as described for {!Bigarray.Genarray.create}. Each element [Array3.get b i j k] of the array is initialized to the result of [f i j k]. In other words, [Array3.init kind layout dim1 dim2 dim3 f] tabulates the results of [f] applied to the indices of a new Bigarray whose layout is described by [kind], [layout], [dim1], [dim2] and [dim3]. @since 4.12 9P:]0@@@@@@@:@@D@6:@@@@@@$dim1à:_2=:_2A@б@гW!t:!_2P:"_2Q@А!a@X\@N3:):(:(:):):):):)@0>@A:/_2D:0_2F@@А!b@Z\@O:;_2H:<_2J@@А!c@\\@P:G_2L:H_2N@@@/% @@@T#:P_2C/@@г:+#int:X_2U:Y_2X@@ @@@U1@@@@@V4@@.%caml_ba_dim_1AA+@@@:g_24:h_2k@6󐠠 E Return the first dimension of the given three-dimensional Bigarray. :u`ln:v`l@@@@@@@:@@@7:@@@@@@Y$dim2Ġ:b:b@б@гΠ!t:b:b@А!a@g\@]3::::::::@xD@A:b:b@@А!b@i\@^:b:b@@А!c@k\@_:b:b@@@/% @@@c#:b/@@г:#int:b:b@@ @@@d1@@@@@e4@@.%caml_ba_dim_2AA+@@@:b:b@7j F Return the second dimension of the given three-dimensional Bigarray. :c:cA@@@@@@@;@@@7{;@@@@@@Y$dim3Š;eCN;eCR@б@гE!t;eCa;eCb@А!a@v\@l3;;;;;;;;@xD@A;eCU;eCW@@А!b@x\@m;)eCY;*eC[@@А!c@z\@n;5eC];6eC_@@@/% @@@r#;>eCT/@@г;#int;FeCf;GeCi@@ @@@s1@@@@@t4@@.%caml_ba_dim_3AA,q@@@;UeCE;VeC|@7ᐠ E Return the third dimension of the given three-dimensional Bigarray. ;cf};df}@@@@@@@;|@@@7;x@@@@@@Y$kindƠ;{h;|h@б@г!t;h;h@А!a@\@{3;;;;;;;;@xD@A;h;h@@А!b@\@|;h;h@@А!c@\@};h;h@@@/% @@@#;h/@@г8c$kind;h;h@А!a72;h;h@@А!b09;h;h@@@D7@@@A;h@@@( @@E"@@,caml_ba_kindAA,@@@;h;h @8i ( Return the kind of the given Bigarray. ;i ;i <@@@@@@@<@@@8z<@@@@@@j&layoutǠ<k>I<k>O@б@гD!t<k>^<k>_@А!a@\@3<<<<<<<<@D@A<k>R<k>T@@А!b@\@<(k>V<)k>X@@А!c@\@<4k>Z<5k>\@@@/% @@@#<=k>Q/@@г/e&layoutfl@А!c2ce@@@#@@@9 @@@@@<@@.caml_ba_layoutAA-x@@@<\k>@<]k>@8萠 * Return the layout of the given Bigarray. =====>=>=>=>=>@>@A=Dz=Ez@@А!b@\@=Pz=Qz@@А!c@\@=\z=]z@@@/% @@@#=ez/@@г=@#int=mz=nz@@ @@@1@@@@@4@@@=xz @: t [size_in_bytes a] is the number of elements in [a] multiplied by [a]'s {!kind_size_in_bytes}. @since 4.03 ={=~I[@@@@@@@=@@@:=@@@@@@S#getʠ=]h=]k@б@гݠ!t=]z=]{@А!a@\@3========@r>@A=]n=]p@@А!b@\@=]r=]t@@А!c@\@=]v=]x@@@/% @@@#=]m/@@б@г=#int=]=]@@ @@@3@@б@г= #int=]=]@@ @@@B@@б@г=Ѡ#int=]=]@@ @@@Q@@А!aZU>]> ]@@@ _@@Z@@@@@]!@@@0@@`3 @@@F@@c@ @@.%caml_ba_ref_3DA/8@@@@@@>]_> ]@:  [Array3.get a x y z], also written [a.{x,y,z}], returns the element of [a] at coordinates ([x], [y], [z]). [x], [y] and [z] must be within the bounds of [a], as described for {!Bigarray.Genarray.get}; otherwise, [Invalid_argument] is raised. >->.@@@@@@@>F@@@:>B@@@@@@#setˠ>E>F@б@г!t>P>Q@А!a@\@3>X>W>W>X>X>X>X>X@G@A>^>_@@А!b@\@>j>k@@А!c@\@>v>w@@@/% @@@#>/@@б@г>\#int>>@@ @@@3@@б@г>k#int>>@@ @@@B@@б@г>z#int>>@@ @@@Q@@б@А!a\W>>@@г>i$unit>>@@ @@@f@@@n@@i@@@@@l! @@@0@@o3@@@B@@rE@@@X@@uR@@.%caml_ba_set_3EA/@@@@@@@>>@;g  [Array3.set a x y v], or alternatively [a.{x,y,z} <- v], stores the value [v] at coordinates ([x], [y], [z]) in [a]. [x], [y] and [z] must be within the bounds of [a], as described for {!Bigarray.Genarray.set}; otherwise, [Invalid_argument] is raised. >>+@@@@@@@?@@@;x>@@@@@@(sub_left̠?-8?-@@б@гB!t? -U? -V@А!a@\@3????????@H@A?-C?-E@@А!b@\@?&-G?'-I@@г2נ(c_layout?0-K?1-S@@ @@@@@@1' @@@%?=-B1@@б@г?#int?G-Z?H-]@@ @@@5@@б@г?)#int?V-a?W-d@@ @@@D@@г!t?c-{?d-|@А!aWR?j-i?k-k@@А!bPY?q-m?r-o@@г3"(c_layout?{-q?|-y@@ @@@i@@@%re @@@p?-h%@@@3 @@t6(@@@E@@wH+@@@[@@zU.@@+caml_ba_subCA0@@@@@?-/?}@<& Extract a three-dimensional sub-array of the given three-dimensional Bigarray by restricting the first dimension. See {!Bigarray.Genarray.sub_left} for more details. [Array3.sub_left] applies only to arrays with C layout. ??Z@@@@@@@?@@@<7?@@@@@@)sub_right͠??@б@г!t??@А!a@\@3????????@F@A??@@А!b@\@??@@г3].fortran_layout??@@ @@@@@@1' @@@%?1@@б@г?٠#int@@@@ @@@ 5@@б@г?蠐#int@@@@ @@@ D@@гX!t@"@#@А!aWR@)@*@@А!bPY@0@1@@г3.fortran_layout@:@;@@ @@@ i@@@%re @@@p@G%@@@3 @@t6(@@@E@@wH+@@@[@@zU.@@+caml_ba_subCA1s@@@@@@Y@Z@<吠 Extract a three-dimensional sub-array of the given three-dimensional Bigarray by restricting the second dimension. See {!Bigarray.Genarray.sub_right} for more details. [Array3.sub_right] applies only to arrays with Fortran layout. @g@h@@@@@@@@@@@<@|@@@@@@,slice_left_1Π@@@б@г!t@*@+@А!a@)\@3@@@@@@@@@F@A@@@@А!b@+\@@@@@г4U(c_layout@ @(@@ @@@@@@1' @@@%@1@@б@г@#int@/@2@@ @@@5@@б@г@#int@6@9@@ @@@D@@г !t&Array1@P@V@ @W@X@@А!a`[@>@@@@А!bYb@B@D@@г4(c_layoutAFAN@@ @@@ r@@@.{n @@@$yA=&@@@< @@%}?)@@@N@@&Q,@@@d@@'^/@@@A2@= 9 Extract a one-dimensional slice of the given three-dimensional Bigarray by fixing the first two coordinates. The integer parameters are the coordinates of the slice to extract. See {!Bigarray.Genarray.slice_left} for more details. [Array3.slice_left_1] applies only to arrays with C layout. A(Y[A)V@@@@@@@AA@@B@=A<@@@@@@-slice_right_1ϠA?A@@б@г !tAJAK@А!a@>\@,3ARAQAQARARARARAR@>@AAXAY@@А!b@@\@-AdAe@@г4ܠ.fortran_layoutAnAo@@ @@@.@@@1' @@@2%A{1@@б@гAX#intAA@@ @@@35@@б@гAg#intAA@@ @@@4D@@г!U!t&Array1AA@ AA@@А!a`[AA@@А!bYbAA@@г50.fortran_layoutAA@@ @@@5r@@@.{n @@@9yA&@@@< @@:}?)@@@N@@;Q,@@@d@@<^/@@@A2@>f E Extract a one-dimensional slice of the given three-dimensional Bigarray by fixing the last two coordinates. The integer parameters are the coordinates of the slice to extract. See {!Bigarray.Genarray.slice_right} for more details. [Array3.slice_right_1] applies only to arrays with Fortran layout. AACR@@@@@@@B@@B@>vA@@@@@@,slice_left_2РATZBTf@б@г @!tB T{B T|@А!a@\@A3BBBBBBBB@>@ABTiBTk@@А!b@\@BB$TmB%To@@г5ՠ(c_layoutB.TqB/Ty@@ @@@C@@@1' @@@G%B;Th1@@б@гB#intBETBFT@@ @@@H5@@г!t&Array2BVTBWT@ BZTB[T@@А!aQLBbTBcT@@А!bJSBiTBjT@@г6(c_layoutBsTBtT@@ @@@c@@@.l_ @@@jBT&@@@< @@n?)@@@R@@qL,@@@BTV/@? 8 Extract a two-dimensional slice of the given three-dimensional Bigarray by fixing the first coordinate. The integer parameter is the first coordinate of the slice to extract. See {!Bigarray.Genarray.slice_left} for more details. [Array3.slice_left_2] applies only to arrays with C layout. BB@@@@@@@B@@?@?$B@@@@@@-slice_right_2ѠBB@б@г !tBB@А!a@\@3BBBBBBBB@>@ABB@@А!b@\@BB@@г6J.fortran_layoutBB@@ @@@@@@1' @@@%B1@@б@гBƠ#intBB@@ @@@5@@гG!t&Array2C;CA@ CBC C@@А!aQLC#C%@@А!bJSC'C)@@г6.fortran_layoutC!+C"9@@ @@@c@@@.l_ @@@jC."&@@@< @@n?)@@@R@@qL,@@@C7/@? = Extract a two-dimensional slice of the given three-dimensional Bigarray by fixing the last coordinate. The integer parameter is the coordinate of the slice to extract. See {!Bigarray.Genarray.slice_right} for more details. [Array3.slice_right_2] applies only to arrays with Fortran layout. CDDFCEy@@@@@@@C]@@?@?CX@@@@@@$blitҠC[C\@б@г !tCfCg@А!a@\@3CnCmCmCnCnCnCnCn@>@ACtCu@@А!b@\@CC@@А!c@\@CC@@@/% @@@#C/@@б@г ՠ!tCC@А!a94CC@@А!b2;CC@@А!c-BCC@@@M@5@@@KC@@гCr$unitCC@@ @@@Y@@@@@\@@@B@@_< @@,caml_ba_blitBA4@@@@CC@@d f Copy the first Bigarray to the second Bigarray. See {!Bigarray.Genarray.blit} for more details. CCF@@@@@@@C@@@@uC@@@@@@$fillӠCHSCHW@б@г ?!tD HfD Hg@А!a@\@3DDDDDDDD@E@ADHZDH\@@А!b@\@D#H^D$H`@@А!c@\@D/HbD0Hd@@@/% @@@#D8HY/@@б@А!a/*D?HkD@Hm@@гC$unitDHHqDIHu@@ @@@9@@@A@@<@@@"@@? @@,caml_ba_fillBA5v@@@@D[HJD\H@@琠 d Fill the given Bigarray with the given value. See {!Bigarray.Genarray.fill} for more details. DiDj@@@@@@@D@@@@D~@@@@@@e(of_arrayԠDD@б@гA2$kindDD@А!a@\@3DDDDDDDD@E@AD D @@А!b@\@D D@@@# @@@D"@@б@г7ؠ&layoutDD"@А!c@\@,DD@@@ @@@ 3@@б@гDZ%arrayD5D:@гDd%arrayD/D4@гDn%arrayD)D.@А!a\WD&D(@@@b@@@ ^ @@@@@@c @@@.@@@h+@@г =!tEKEL@А!a{vE?EA@@А!bt}ECEE@@А!c]EGEI@@@e@@@E%>@@@- @@:!@@@e@@h$@@@@@'@@@E1*@A ` Build a three-dimensional Bigarray initialized from the given array of arrays of arrays. E>MOE?@@@@@@@EW@@:@AER@@@@@@*unsafe_getՠEUEV@б@г !tE`Ea@А!a@-\@3EhEgEgEhEhEhEhEh@>@AEnEo@@А!b@/\@EzE{@@А!c@1\@ EE@@@/% @@@$#E/@@б@гEl#intEE@@ @@@%3@@б@гE{#intEE@@ @@@&B@@б@гE#intEE@@ @@@'Q@@А!aZUEE@@@ _@@(Z@@@@@)]!@@@0@@*`3 @@@F@@+c@ @@5%caml_ba_unsafe_ref_3DA6@@@@@@EE%@Bd Q Like {!Bigarray.Array3.get}, but bounds checking is not always performed. E&(Ek~@@@@@@@E@@@BuE@@@@@@*unsafe_set֠EE@б@г?!tF F @А!a@C\@23FFFFFFFF@G@AFF@@А!b@E\@3F#F$@@А!c@G\@4F/F0@@@/% @@@8#F8/@@б@гF#intFBFC@@ @@@93@@б@гF$#intFQFR@@ @@@:B@@б@гF3#intF`Fa@@ @@@;Q@@б@А!a\WFlFm@@гF"$unitFuFv@@ @@@<f@@@n@@=i@@@@@>l! @@@0@@?o3@@@B@@@rE@@@X@@AuR@@5%caml_ba_unsafe_set_3EA7@@@@@@@FF@C Q Like {!Bigarray.Array3.set}, but bounds checking is not always performed. FF=P@@@@@@@F@@@C1F@@@@@@@A@ @  @  Y@ 3 @  o@ I @  l@ F @  P@ 0@@:@}@U@@M@-@@@_@@V@@3FFFFFFFF@X@A1hFBFRU@@CpF Three-dimensional arrays. The [Array3] structure provides operations similar to those of {!Bigarray.Genarray}, but specialized to the case of three-dimensional arrays. F>F@@@@@@@@FA@|@G G G {1 Coercions between generic Bigarrays and fixed-dimension Bigarrays} GWWGW@@@@@@3GGGGGGGG@U@IA@5@ #@  @  ?@  @  D@  @  @  @  @T@*@m@@T@4@@b@;@@j@A@@CŐTS@SS@@@S@S@P@A?2genarray_of_array0ؠGMGN@б@г.!t&Array0G\G]@ G`Ga@@А!a@\@HcGmGn@@А!b@\@IoGyGz@@А!c@\@J{GG@@@6# @@@NG.@@г9!t(GenarrayGG@ GG@@А!a>GG@@А!b9GG@@А!c4GG@@@'RG<@@@G@@@9 @@3"@@)%identityAA8@@@GG@DS g Return the generic Bigarray corresponding to the given zero-dimensional Bigarray. @since 4.05 GG^p@@@@@@@G@@@DdGꐠ@@@@@@2genarray_of_array1٠Gr{Gr@б@г'!t&Array1GG@ HH@@А!a@\@3H HHH H H H H @M@AHH@@А!b@\@HH@@А!c@\@H'H(@@@8% @@@#H00@@г:j!t(GenarrayH<H=@ H@HA@@А!a@;HHHI@@А!b9BHOHP@@А!c4IHVHW@@@'TG<@@@RH_@@@9 @@V3"@@)%identityAA9@@@HirrHj@D U Return the generic Bigarray corresponding to the given one-dimensional Bigarray. HwHx+@@@@@@@H@@@EH@@@@@@{2genarray_of_array2ڠH-6H-H@б@г!t&Array2HKZHK`@ HKaHKb@@А!a@\@3HHHHHHHH@M@AHKNHKP@@А!b@\@HKRHKT@@А!c@\@HKVHKX@@@8% @@@#HKM0@@г; !t(GenarrayHKsHK{@ HK|HK}@@А!a@;HKgHKi@@А!b9BHKkHKm@@А!c4IHKoHKq@@@'TG<@@@RIKf@@@9 @@V3"@@)%identityAA:'@@@I --I K@E U Return the generic Bigarray corresponding to the given two-dimensional Bigarray. II@@@@@@@I2@@@EI.@@@@@@{2genarray_of_array3۠I1I2@б@г!t&Array3I@IA@ IDIE@@А!a@\@3IMILILIMIMIMIMIM@M@AIS IT @@А!b@\@I_ I`@@А!c@\@IkIl@@@8% @@@#It0@@г;!t(GenarrayI.I6@ I7I8@@А!a@;I"I$@@А!b9BI&I(@@А!c4II*I,@@@'TG<@@@RI!@@@9 @@V3"@@)%identityAA:ɠ@@@IIF@F9 W Return the generic Bigarray corresponding to the given three-dimensional Bigarray. IGGI@@@@@@@I@@@FJIА@@@@@@{2array0_of_genarrayܠII@б@г<!t(GenarrayII@ II@@А!a@\@3IIIIIIII@M@AII@@А!b@\@JJ@@А!c@\@J J@@@8% @@@#J0@@г0!t&Array0J"J#@ J&J'@@А!a@;J.J/@@А!b9BJ5J6@@А!c4IJ<J=@@@'TG<@@@RJE@@@9 @@V3"@@@JK%@F֐ Return the zero-dimensional Bigarray corresponding to the given generic Bigarray. @raise Invalid_argument if the generic Bigarray does not have exactly zero dimension. @since 4.05 JXJY@@@@@@@Jq@@5@FJl@@@@@@u2array1_of_genarrayݠJoJp@б@г!t(GenarrayLe Lf @ Li Lj @@А!a@\@)Lv Lw @@А!b@\@5L L @@А!c@\@AL L @@@6# @@@JL .@@б@гL'%arrayL L @гL~#intL  L @@ @@@d@@@@@@i @@г>!t(GenarrayL %L -@ L .L /@@А!a\L L @@А!bWL L @@А!cRL !L #@@@'peZ@@@L @@@6 @@="@@@Z@@T%@@@L (@Ix 2 [reshape b [|d1;...;dN|]] converts the Bigarray [b] to a [N]-dimensional array of dimensions [d1]...[dN]. The returned array and the original array [b] share their data and have the same layout. For instance, assuming that [b] is a one-dimensional array of dimension 12, [reshape b [|3;4|]] returns a two-dimensional array [b'] of dimensions 3 and 4. If [b] has C layout, the element [(x,y)] of [b'] corresponds to the element [x * 3 + y] of [b]. If [b] has Fortran layout, the element [(x,y)] of [b'] corresponds to the element [x + (y - 1) * 4] of [b]. The returned Bigarray must have exactly the same number of elements as the original Bigarray [b]. That is, the product of the dimensions of [b] must be equal to [i1 * ... * iN]. Otherwise, [Invalid_argument] is raised. L00L9g@@@@@@@M@@8@IM@@@@@@)reshape_0MimMiv@б@г?N!t(GenarrayM iM!i@ M$iM%i@@А!a@\@3M-M,M,M-M-M-M-M-@G@AM3izM4i|@@А!b@\@M?i~M@i@@А!c@\@MKiMLi@@@8% @@@#MTiy0@@г4!t&Array0M`iMai@ MdiMei@@А!a@;MliMmi@@А!b9BMsiMti@@А!c4IMziM{i@@@'TG<@@@RMi@@@9 @@V3"@@@Mii%@J h Specialized version of {!Bigarray.reshape} for reshaping to zero-dimensional arrays. @since 4.05 MM @@@@@@@M@@5@J$M@@@@@@u)reshape_1M"M"&@б@г?!t(GenarrayM"6M">@ M"?M"@@@А!a@\@3MMMMMMMM@G@AM"*M",@@А!b@\@M".M"0@@А!c@\@M"2M"4@@@8% @@@#M")0@@б@гM͠#intM"DM"G@@ @@@3@@г-!t&Array1N "XN "^@ N"_N"`@@А!aOJN"LN"N@@А!bHQN"PN"R@@А!cCXN%"TN&"V@@@'cVK@@@ aN."K@@@5 @@ e8"@@@K@@hE%@@@N7"(@J X Specialized version of {!Bigarray.reshape} for reshaping to one-dimensional arrays. ND#aaNE$@@@@@@@N]@@8@JNX@@@@@@)reshape_2N[&N\&@б@г@!t(GenarrayNj&Nk&@ Nn&No&@@А!a@&\@3NwNvNvNwNwNwNwNw@G@AN}&N~&@@А!b@(\@N&N&@@А!c@*\@N&N&@@@8% @@@#N&0@@б@гN{#intN&N&@@ @@@3@@б@гN#intN&N&@@ @@@B@@г$ !t&Array2N&N& @ N& N&@@А!a^YN&N&@@А!bW`N&N&@@А!cRgN&N&@@@'reZ@@@!pN&@@@5 @@"t8"@@@G@@#wJ%@@@]@@$zW(@@@N&+@K X Specialized version of {!Bigarray.reshape} for reshaping to two-dimensional arrays. O'O(Ol@@@@@@@O@@;@KO@@@@@@)reshape_3O*nrO*n{@б@гAX!t(GenarrayO*+~O++~@ O.+~O/+~@@А!a@>\@+3O7O6O6O7O7O7O7O7@G@AO=+~O>+~@@А!b@@\@,OI+~OJ+~@@А!c@B\@-OU+~OV+~@@@8% @@@1#O^+~0@@б@гO;#intOh+~Oi+~@@ @@@23@@б@гOJ#intOw+~Ox+~@@ @@@3B@@б@гOY#intO+~O+~@@ @@@4Q@@г!t&Array3O+~O+~@ O+~O+~@@А!amhO+~O+~@@А!bfoO+~O+~@@А!cavO+~O+~@@@'ti@@@8O+~@@@5 @@98"@@@G@@:J%@@@Y@@;\(@@@o@@<i+@@@O*nn.@LT [ Specialized version of {!Bigarray.reshape} for reshaping to three-dimensional arrays. O,O-&@@@@@@@O@@>@LdOꐠ@@@@@@OO K {1:bigarray_concurrency Bigarrays and concurrency safety} Care must be taken when concurrently accessing bigarrays from multiple domains: accessing a bigarray will never crash a program, but unsynchronized accesses might yield surprising (non-sequentially-consistent) results. {2:bigarray_atomicity Atomicity} Every bigarray operation that accesses more than one array element is not atomic. This includes slicing, bliting, and filling bigarrays. For example, consider the following program: {[open Bigarray let size = 100_000_000 let a = Array1.init Int C_layout size (fun _ -> 1) let update f a () = for i = 0 to size - 1 do a.{i} <- f a.{i} done let d1 = Domain.spawn (update (fun x -> x + 1) a) let d2 = Domain.spawn (update (fun x -> 2 * x + 1) a) let () = Domain.join d1; Domain.join d2 ]} After executing this code, each field of the bigarray [a] is either [2], [3], [4] or [5]. If atomicity is required, then the user must implement their own synchronization (for example, using {!Mutex.t}). {2:bigarray_data_race Data races} If two domains only access disjoint parts of the bigarray, then the observed behaviour is the equivalent to some sequential interleaving of the operations from the two domains. A data race is said to occur when two domains access the same bigarray element without synchronization and at least one of the accesses is a write. In the absence of data races, the observed behaviour is equivalent to some sequential interleaving of the operations from different domains. Whenever possible, data races should be avoided by using synchronization to mediate the accesses to the bigarray elements. Indeed, in the presence of data races, programs will not crash but the observed behaviour may not be equivalent to any sequential interleaving of operations from different domains. {2:bigarrarray_data_race_tearing Tearing} Bigarrays have a distinct caveat in the presence of data races: concurrent bigarray operations might produce surprising values due to tearing. More precisely, the interleaving of partial writes and reads might create values that would not exist with a sequential execution. For instance, at the end of {[let res = Array1.init Complex64 c_layout size (fun _ -> Complex.zero) let d1 = Domain.spawn (fun () -> Array1.fill res Complex.one) let d2 = Domain.spawn (fun () -> Array1.fill res Complex.i) let () = Domain.join d1; Domain.join d2 ]} the [res] bigarray might contain values that are neither [Complex.i] nor [Complex.one] (for instance [1 + i]). O/((Oivx@@@@@@3OOOOOOOO@1@A@N\NVA@N>N8A@NNA@MMA@MMA@MMA@MMA@M~MxA@M^MXA@M>M8A@MMA@LLA@LLA@LL~A@HH@HHw@HWH#@HG@GGi@GIG@FF@FFm@FMF@EE@EEq@EQE@DD@DDu@DUD@CCA@CCA@C\C>A@BB@BB@Bs@70@7,Bm@@6@0K0086@@/@%%%/@@%@%@@@ i  V@@ @f@L@&@ @r@R@>@ r@R@,@ n@N@@3PbPaPaPbPbPbPbPb@o@A@ H************************************************************************PjA@@PkA@L@ H PpBMMPqBM@ H OCaml PvCPwC@ H P|DP}D3@ H Manuel Serrano and Xavier Leroy, INRIA Rocquencourt PE44PE4@ H PFPF@ H Copyright 2000 Institut National de Recherche en Informatique et PGPG@ H en Automatique. PHPHg@ H PIhhPIh@ H All rights reserved. This file is distributed under the terms of PJPJ@ H the GNU Lesser General Public License version 2.1, with the PKPKN@ H special exception on linking described in the file LICENSE. PLOOPLO@ H PMPM@ H************************************************************************PNPN5@ A* Large, multi-dimensional, numerical arrays. This module implements multi-dimensional arrays of integers and floating-point numbers, thereafter referred to as 'Bigarrays', to distinguish them from the standard OCaml arrays described in {!module:Array}. The implementation allows efficient sharing of large numerical arrays between OCaml code and C or Fortran numerical libraries. The main differences between 'Bigarrays' and standard OCaml arrays are as follows: - Bigarrays are not limited in size, unlike OCaml arrays. (Normal float arrays are limited to 2,097,151 elements on a 32-bit platform, and normal arrays of other types to 4,194,303 elements.) - Bigarrays are multi-dimensional. Any number of dimensions between 0 and 16 is supported. In contrast, OCaml arrays are mono-dimensional and require encoding multi-dimensional arrays as arrays of arrays. - Bigarrays can only contain integers and floating-point numbers, while OCaml arrays can contain arbitrary OCaml data types. - Bigarrays provide more space-efficient storage of integer and floating-point elements than normal OCaml arrays, in particular because they support 'small' types such as single-precision floats and 8 and 16-bit integers, in addition to the standard OCaml types of double-precision floats and 32 and 64-bit integers. - The memory layout of Bigarrays is entirely compatible with that of arrays in C and Fortran, allowing large arrays to be passed back and forth between OCaml code and C / Fortran code with no data copying at all. - Bigarrays support interesting high-level operations that normal arrays do not provide efficiently, such as extracting sub-arrays and 'slicing' a multi-dimensional array along certain dimensions, all without any copying. Users of this module are encouraged to do [open Bigarray] in their source, then refer to array types and operations via short dot notation, e.g. [Array1.t] or [Array2.sub]. Bigarrays support all the OCaml ad-hoc polymorphic operations: - comparisons ([=], [<>], [<=], etc, as well as {!Stdlib.compare}); - hashing (module [Hash]); - and structured input-output (the functions from the {!Marshal} module, as well as {!Stdlib.output_value} and {!Stdlib.input_value}). P !* {1:elementkinds Element kinds} O; `* Bigarrays can contain elements of the following kinds: - IEEE half precision (16 bits) floating-point numbers ({!Bigarray.float16_elt}), - IEEE single precision (32 bits) floating-point numbers ({!Bigarray.float32_elt}), - IEEE double precision (64 bits) floating-point numbers ({!Bigarray.float64_elt}), - IEEE single precision (2 * 32 bits) floating-point complex numbers ({!Bigarray.complex32_elt}), - IEEE double precision (2 * 64 bits) floating-point complex numbers ({!Bigarray.complex64_elt}), - 8-bit integers (signed or unsigned) ({!Bigarray.int8_signed_elt} or {!Bigarray.int8_unsigned_elt}), - 16-bit integers (signed or unsigned) ({!Bigarray.int16_signed_elt} or {!Bigarray.int16_unsigned_elt}), - OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on 64-bit architectures) ({!Bigarray.int_elt}), - 32-bit signed integers ({!Bigarray.int32_elt}), - 64-bit signed integers ({!Bigarray.int64_elt}), - platform-native signed integers (32 bits on 32-bit architectures, 64 bits on 64-bit architectures) ({!Bigarray.nativeint_elt}). Each element kind is represented at the type level by one of the [*_elt] types defined below (defined with a single constructor instead of abstract types for technical injectivity reasons). @since 4.07 Moved from otherlibs to stdlib. @since 5.2 Added float16_elt element kind. O-!*P|9P|=@ * To each element kind is associated an OCaml type, which is the type of OCaml values that can be stored in the Bigarray or read back from it. This type is not necessarily the same as the type of the array elements proper: for instance, a Bigarray whose elements are of kind [float32_elt] contains 32-bit single precision floats, but reading or writing one of its elements from OCaml uses the OCaml type [float], which is 64-bit double precision floats. The GADT type [('a, 'b) kind] captures this association of an OCaml type ['a] for values read or written in the Bigarray, and of an element kind ['b] which represents the actual contents of the Bigarray. Its constructors list all possible associations of OCaml types with element kinds, and are re-exported below for backward-compatibility reasons. Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as: {[ let zero : type a b. (a, b) kind -> a = function | Float32 -> 0.0 | Complex32 -> Complex.zero | Float64 -> 0.0 | Complex64 -> Complex.zero | Float16 -> 0.0 | Int8_signed -> 0 | Int8_unsigned -> 0 | Int16_signed -> 0 | Int16_unsigned -> 0 | Int32 -> 0l | Int64 -> 0L | Int -> 0 | Nativeint -> 0n | Char -> '\000' ]} @since 5.2 Constructor Float16 for the GADT. MI &* See {!Bigarray.char}. @since 5.2 Iv8* See {!Bigarray.char}. I#8* See {!Bigarray.char}. HР8* See {!Bigarray.char}. Ht8* See {!Bigarray.char}. H8* See {!Bigarray.char}. GŠ8* See {!Bigarray.char}. Gr8* See {!Bigarray.char}. G8* See {!Bigarray.char}. F̠ * See {!Bigarray.char} and {!section:elementkinds}. Beware that this is a bigarray containing OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on 64-bit architectures), which does not match the [C] int type. Fy8* See {!Bigarray.char}. F&8* See {!Bigarray.char}. EӠ8* See {!Bigarray.char}. E 7* As shown by the types of the values above, Bigarrays of kind [float16_elt], [float32_elt] and [float64_elt] are accessed using the OCaml type [float]. Bigarrays of complex kinds [complex32_elt], [complex64_elt] are accessed with the OCaml type {!Complex.t}. Bigarrays of integer kinds are accessed using the smallest OCaml integer type large enough to represent the array elements: [int] for 8- and 16-bit integer Bigarrays, as well as OCaml-integer Bigarrays; [int32] for 32-bit integer Bigarrays; [int64] for 64-bit integer Bigarrays; and [nativeint] for platform-native integer Bigarrays. Finally, Bigarrays of kind [int8_unsigned_elt] can also be accessed as arrays of characters instead of arrays of small integers, by using the kind value [char] instead of [int8_unsigned]. E- i* [kind_size_in_bytes k] is the number of bytes used to store an element of type [k]. @since 4.03 D̠4* {1 Array layouts} D!*Q%~%Q%~%@ &* See {!type:Bigarray.fortran_layout}.D!*Q %%Q %%@ B* To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions. In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out in row-major format. That is, for a two-dimensional array, all elements of row 0 are contiguous in memory, followed by all elements of row 1, etc. In other terms, the array elements at [(x,y)] and [(x, y+1)] are adjacent in memory. In the Fortran-style layout, array indices start at 1, and multi-dimensional arrays are laid out in column-major format. That is, for a two-dimensional array, all elements of column 0 are contiguous in memory, followed by all elements of column 1, etc. In other terms, the array elements at [(x,y)] and [(x+1, y)] are adjacent in memory. Each layout style is identified at the type level by the phantom types {!type:Bigarray.c_layout} and {!type:Bigarray.fortran_layout} respectively. Db * {2 Supported layouts} The GADT type ['a layout] represents one of the two supported memory layouts: C-style or Fortran-style. Its constructors are re-exported as values below for backward-compatibility reasons. D? 6* {1 Generic arrays (of arbitrarily many dimensions)} CS v* The type [Genarray.t] is the type of Bigarrays with variable numbers of dimensions. Any number of dimensions between 0 and 16 is supported. The three type parameters to [Genarray.t] identify the array element kind and layout, as follows: - the first parameter, ['a], is the OCaml type for accessing array elements ([float], [int], [int32], [int64], [nativeint]); - the second parameter, ['b], is the actual kind of array elements ([float32_elt], [float64_elt], [int8_signed_elt], [int8_unsigned_elt], etc); - the third parameter, ['c], identifies the array layout ([c_layout] or [fortran_layout]). For instance, [(float, float32_elt, fortran_layout) Genarray.t] is the type of generic Bigarrays containing 32-bit floats in Fortran layout; reads and writes in this array use the OCaml type [float]. C * [Genarray.create kind layout dimensions] returns a new Bigarray whose element kind is determined by the parameter [kind] (one of [float32], [float64], [int8_signed], etc) and whose layout is determined by the parameter [layout] (one of [c_layout] or [fortran_layout]). The [dimensions] parameter is an array of integers that indicate the size of the Bigarray in each dimension. The length of [dimensions] determines the number of dimensions of the Bigarray. For instance, [Genarray.create int32 c_layout [|4;6;8|]] returns a fresh Bigarray of 32-bit integers, in C layout, having three dimensions, the three dimensions being 4, 6 and 8 respectively. Bigarrays returned by [Genarray.create] are not initialized: the initial values of array elements is unspecified. [Genarray.create] raises [Invalid_argument] if the number of dimensions is not in the range 0 to 16 inclusive, or if one of the dimensions is negative. B& * [Genarray.init kind layout dimensions f] returns a new Bigarray [b] whose element kind is determined by the parameter [kind] (one of [float32], [float64], [int8_signed], etc) and whose layout is determined by the parameter [layout] (one of [c_layout] or [fortran_layout]). The [dimensions] parameter is an array of integers that indicate the size of the Bigarray in each dimension. The length of [dimensions] determines the number of dimensions of the Bigarray. Each element [Genarray.get b i] is initialized to the result of [f i]. In other words, [Genarray.init kind layout dimensions f] tabulates the results of [f] applied to the indices of a new Bigarray whose layout is described by [kind], [layout] and [dimensions]. The index array [i] may be shared and mutated between calls to f. For instance, [Genarray.init int c_layout [|2; 1; 3|] (Array.fold_left (+) 0)] returns a fresh Bigarray of integers, in C layout, having three dimensions (2, 1, 3, respectively), with the element values 0, 1, 2, 1, 2, 3. [Genarray.init] raises [Invalid_argument] if the number of dimensions is not in the range 0 to 16 inclusive, or if one of the dimensions is negative. @since 4.12 A> 9* Return the number of dimensions of the given Bigarray. @ˠ ~* [Genarray.dims a] returns all dimensions of the Bigarray [a], as an array of integers of length [Genarray.num_dims a]. @M R* [Genarray.nth_dim a n] returns the [n]-th dimension of the Bigarray [a]. The first dimension corresponds to [n = 0]; the second dimension corresponds to [n = 1]; the last dimension, to [n = Genarray.num_dims a - 1]. @raise Invalid_argument if [n] is less than 0 or greater or equal than [Genarray.num_dims a]. ?Ǡ )* Return the kind of the given Bigarray. ?B +* Return the layout of the given Bigarray. >Ơ * [Genarray.change_layout a layout] returns a Bigarray with the specified [layout], sharing the data with [a] (and hence having the same dimensions as [a]). No copying of elements is involved: the new array and the original array share the same storage space. The dimensions are reversed, such that [get v [| a; b |]] in C layout becomes [get v [| b+1; a+1 |]] in Fortran layout. @since 4.04 > u* [size_in_bytes a] is the number of elements in [a] multiplied by [a]'s {!kind_size_in_bytes}. @since 4.03 = * Read an element of a generic Bigarray. [Genarray.get a [|i1; ...; iN|]] returns the element of [a] whose coordinates are [i1] in the first dimension, [i2] in the second dimension, ..., [iN] in the [N]-th dimension. If [a] has C layout, the coordinates must be greater or equal than 0 and strictly less than the corresponding dimensions of [a]. If [a] has Fortran layout, the coordinates must be greater or equal than 1 and less or equal than the corresponding dimensions of [a]. If [N > 3], alternate syntax is provided: you can write [a.{i1, i2, ..., iN}] instead of [Genarray.get a [|i1; ...; iN|]]. (The syntax [a.{...}] with one, two or three coordinates is reserved for accessing one-, two- and three-dimensional arrays as described below.) @raise Invalid_argument if the array [a] does not have exactly [N] dimensions, or if the coordinates are outside the array bounds. = * Assign an element of a generic Bigarray. [Genarray.set a [|i1; ...; iN|] v] stores the value [v] in the element of [a] whose coordinates are [i1] in the first dimension, [i2] in the second dimension, ..., [iN] in the [N]-th dimension. The array [a] must have exactly [N] dimensions, and all coordinates must lie inside the array bounds, as described for [Genarray.get]; otherwise, [Invalid_argument] is raised. If [N > 3], alternate syntax is provided: you can write [a.{i1, i2, ..., iN} <- v] instead of [Genarray.set a [|i1; ...; iN|] v]. (The syntax [a.{...} <- v] with one, two or three coordinates is reserved for updating one-, two- and three-dimensional arrays as described below.)  Genarray.nth_dim a 0]. ; * Extract a sub-array of the given Bigarray by restricting the last (right-most) dimension. [Genarray.sub_right a ofs len] returns a Bigarray with the same number of dimensions as [a], and the same dimensions as [a], except the last dimension, which corresponds to the interval [[ofs ... ofs + len - 1]] of the last dimension of [a]. No copying of elements is involved: the sub-array and the original array share the same storage space. In other terms, the element at coordinates [[|i1; ...; iN|]] of the sub-array is identical to the element at coordinates [[|i1; ...; iN+ofs|]] of the original array [a]. [Genarray.sub_right] applies only to Bigarrays in Fortran layout. @raise Invalid_argument if [ofs] and [len] do not designate a valid sub-array of [a], that is, if [ofs < 1], or [len < 0], or [ofs + len > Genarray.nth_dim a (Genarray.num_dims a - 1)]. ; (* Extract a sub-array of lower dimension from the given Bigarray by fixing one or several of the first (left-most) coordinates. [Genarray.slice_left a [|i1; ... ; iM|]] returns the 'slice' of [a] obtained by setting the first [M] coordinates to [i1], ..., [iM]. If [a] has [N] dimensions, the slice has dimension [N - M], and the element at coordinates [[|j1; ...; j(N-M)|]] in the slice is identical to the element at coordinates [[|i1; ...; iM; j1; ...; j(N-M)|]] in the original array [a]. No copying of elements is involved: the slice and the original array share the same storage space. [Genarray.slice_left] applies only to Bigarrays in C layout. @raise Invalid_argument if [M >= N], or if [[|i1; ... ; iM|]] is outside the bounds of [a]. :J /* Extract a sub-array of lower dimension from the given Bigarray by fixing one or several of the last (right-most) coordinates. [Genarray.slice_right a [|i1; ... ; iM|]] returns the 'slice' of [a] obtained by setting the last [M] coordinates to [i1], ..., [iM]. If [a] has [N] dimensions, the slice has dimension [N - M], and the element at coordinates [[|j1; ...; j(N-M)|]] in the slice is identical to the element at coordinates [[|j1; ...; j(N-M); i1; ...; iM|]] in the original array [a]. No copying of elements is involved: the slice and the original array share the same storage space. [Genarray.slice_right] applies only to Bigarrays in Fortran layout. @raise Invalid_argument if [M >= N], or if [[|i1; ... ; iM|]] is outside the bounds of [a]. 9 y* Copy all elements of a Bigarray in another Bigarray. [Genarray.blit src dst] copies all elements of [src] into [dst]. Both arrays [src] and [dst] must have the same number of dimensions and equal dimensions. Copying a sub-array of [src] to a sub-array of [dst] can be achieved by applying [Genarray.blit] to sub-array or slices of [src] and [dst]. 8  * Set all elements of a Bigarray to a given value. [Genarray.fill a v] stores the value [v] in all elements of the Bigarray [a]. Setting only some elements of [a] to [v] can be achieved by applying [Genarray.fill] to a sub-array or a slice of [a]. 8r>* {1 Zero-dimensional arrays} 8) e* Zero-dimensional arrays. The [Array0] structure provides operations similar to those of {!Bigarray.Genarray}, but specialized to the case of zero-dimensional arrays that only contain a single scalar value. Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking. @since 4.05 1I * The type of zero-dimensional Bigarrays whose elements have OCaml type ['a], representation kind ['b], and memory layout ['c]. 7 * [Array0.create kind layout] returns a new Bigarray of zero dimension. [kind] and [layout] determine the array element kind and the array layout as described for {!Genarray.create}. 7 * [Array0.init kind layout v] behaves like [Array0.create kind layout] except that the element is additionally initialized to the value [v]. @since 4.12 6` )* Return the kind of the given Bigarray. 5ܠ +* Return the layout of the given Bigarray. 5` * [Array0.change_layout a layout] returns a Bigarray with the specified [layout], sharing the data with [a]. No copying of elements is involved: the new array and the original array share the same storage space. @since 4.06 4 4* [size_in_bytes a] is [a]'s {!kind_size_in_bytes}. 4K 2* [Array0.get a] returns the only element in [a]. 3䠠 2* [Array0.set a x v] stores the value [v] in [a]. 3k ^* Copy the first Bigarray to the second Bigarray. See {!Genarray.blit} for more details. 2̠ \* Fill the given Bigarray with the given value. See {!Genarray.fill} for more details. 2L L* Build a zero-dimensional Bigarray initialized from the given value. 1=* {1 One-dimensional arrays} 1\ * One-dimensional arrays. The [Array1] structure provides operations similar to those of {!Bigarray.Genarray}, but specialized to the case of one-dimensional arrays. (The {!Array2} and {!Array3} structures below provide operations specialized for two- and three-dimensional arrays.) Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking. ' * The type of one-dimensional Bigarrays whose elements have OCaml type ['a], representation kind ['b], and memory layout ['c]. 0 * [Array1.create kind layout dim] returns a new Bigarray of one dimension, whose size is [dim]. [kind] and [layout] determine the array element kind and the array layout as described for {!Genarray.create}. 0' * [Array1.init kind layout dim f] returns a new Bigarray [b] of one dimension, whose size is [dim]. [kind] and [layout] determine the array element kind and the array layout as described for {!Genarray.create}. Each element [Array1.get b i] of the array is initialized to the result of [f i]. In other words, [Array1.init kind layout dimensions f] tabulates the results of [f] applied to the indices of a new Bigarray whose layout is described by [kind], [layout] and [dim]. @since 4.12 /^ J* Return the size (dimension) of the given one-dimensional Bigarray. .렠 )* Return the kind of the given Bigarray. .f +* Return the layout of the given Bigarray. -ꠠ (* [Array1.change_layout a layout] returns a Bigarray with the specified [layout], sharing the data with [a] (and hence having the same dimension as [a]). No copying of elements is involved: the new array and the original array share the same storage space. @since 4.06 -C u* [size_in_bytes a] is the number of elements in [a] multiplied by [a]'s {!kind_size_in_bytes}. @since 4.03 ,ՠ d* [Array1.get a x], or alternatively [a.{x}], returns the element of [a] at index [x]. [x] must be greater or equal than [0] and strictly less than [Array1.dim a] if [a] has C layout. If [a] has Fortran layout, [x] must be greater or equal than [1] and less or equal than [Array1.dim a]. Otherwise, [Invalid_argument] is raised. ,V * [Array1.set a x v], also written [a.{x} <- v], stores the value [v] at index [x] in [a]. [x] must be inside the bounds of [a] as described in {!Bigarray.Array1.get}; otherwise, [Invalid_argument] is raised. +à m* Extract a sub-array of the given one-dimensional Bigarray. See {!Genarray.sub_left} for more details. +  * Extract a scalar (zero-dimensional slice) of the given one-dimensional Bigarray. The integer parameter is the index of the scalar to extract. See {!Bigarray.Genarray.slice_left} and {!Bigarray.Genarray.slice_right} for more details. @since 4.05 *m ^* Copy the first Bigarray to the second Bigarray. See {!Genarray.blit} for more details. )Π \* Fill the given Bigarray with the given value. See {!Genarray.fill} for more details. )N K* Build a one-dimensional Bigarray initialized from the given array. ( * Like {!Bigarray.Array1.get}, but bounds checking is not always performed. Use with caution and only when the program logic guarantees that the access is within bounds. ( * Like {!Bigarray.Array1.set}, but bounds checking is not always performed. Use with caution and only when the program logic guarantees that the access is within bounds. '=* {1 Two-dimensional arrays} '2 * Two-dimensional arrays. The [Array2] structure provides operations similar to those of {!Bigarray.Genarray}, but specialized to the case of two-dimensional arrays. O * The type of two-dimensional Bigarrays whose elements have OCaml type ['a], representation kind ['b], and memory layout ['c]. &  /* [Array2.create kind layout dim1 dim2] returns a new Bigarray of two dimensions, whose size is [dim1] in the first dimension and [dim2] in the second dimension. [kind] and [layout] determine the array element kind and the array layout as described for {!Bigarray.Genarray.create}. %ᠠ t* [Array2.init kind layout dim1 dim2 f] returns a new Bigarray [b] of two dimensions, whose size is [dim2] in the first dimension and [dim2] in the second dimension. [kind] and [layout] determine the array element kind and the array layout as described for {!Bigarray.Genarray.create}. Each element [Array2.get b i j] of the array is initialized to the result of [f i j]. In other words, [Array2.init kind layout dim1 dim2 f] tabulates the results of [f] applied to the indices of a new Bigarray whose layout is described by [kind], [layout], [dim1] and [dim2]. @since 4.12 $ D* Return the first dimension of the given two-dimensional Bigarray. $ E* Return the second dimension of the given two-dimensional Bigarray. $ )* Return the kind of the given Bigarray. # +* Return the layout of the given Bigarray. # * [Array2.change_layout a layout] returns a Bigarray with the specified [layout], sharing the data with [a] (and hence having the same dimensions as [a]). No copying of elements is involved: the new array and the original array share the same storage space. The dimensions are reversed, such that [get v [| a; b |]] in C layout becomes [get v [| b+1; a+1 |]] in Fortran layout. @since 4.06 "e u* [size_in_bytes a] is the number of elements in [a] multiplied by [a]'s {!kind_size_in_bytes}. @since 4.03 ! * [Array2.get a x y], also written [a.{x,y}], returns the element of [a] at coordinates ([x], [y]). [x] and [y] must be within the bounds of [a], as described for {!Bigarray.Genarray.get}; otherwise, [Invalid_argument] is raised. !e * [Array2.set a x y v], or alternatively [a.{x,y} <- v], stores the value [v] at coordinates ([x], [y]) in [a]. [x] and [y] must be within the bounds of [a], as described for {!Bigarray.Genarray.set}; otherwise, [Invalid_argument] is raised.  * Extract a two-dimensional sub-array of the given two-dimensional Bigarray by restricting the first dimension. See {!Bigarray.Genarray.sub_left} for more details. [Array2.sub_left] applies only to arrays with C layout.   * Extract a two-dimensional sub-array of the given two-dimensional Bigarray by restricting the second dimension. See {!Bigarray.Genarray.sub_right} for more details. [Array2.sub_right] applies only to arrays with Fortran layout. G  * Extract a row (one-dimensional slice) of the given two-dimensional Bigarray. The integer parameter is the index of the row to extract. See {!Bigarray.Genarray.slice_left} for more details. [Array2.slice_left] applies only to arrays with C layout.  * Extract a column (one-dimensional slice) of the given two-dimensional Bigarray. The integer parameter is the index of the column to extract. See {!Bigarray.Genarray.slice_right} for more details. [Array2.slice_right] applies only to arrays with Fortran layout.  g* Copy the first Bigarray to the second Bigarray. See {!Bigarray.Genarray.blit} for more details. Q e* Fill the given Bigarray with the given value. See {!Bigarray.Genarray.fill} for more details. Ѡ U* Build a two-dimensional Bigarray initialized from the given array of arrays.  R* Like {!Bigarray.Array2.get}, but bounds checking is not always performed. | R* Like {!Bigarray.Array2.set}, but bounds checking is not always performed. ֠?* {1 Three-dimensional arrays} z * Three-dimensional arrays. The [Array3] structure provides operations similar to those of {!Bigarray.Genarray}, but specialized to the case of three-dimensional arrays.   * The type of three-dimensional Bigarrays whose elements have OCaml type ['a], representation kind ['b], and memory layout ['c].  K* [Array3.create kind layout dim1 dim2 dim3] returns a new Bigarray of three dimensions, whose size is [dim1] in the first dimension, [dim2] in the second dimension, and [dim3] in the third. [kind] and [layout] determine the array element kind and the array layout as described for {!Bigarray.Genarray.create}.  * [Array3.init kind layout dim1 dim2 dim3 f] returns a new Bigarray [b] of three dimensions, whose size is [dim1] in the first dimension, [dim2] in the second dimension, and [dim3] in the third. [kind] and [layout] determine the array element kind and the array layout as described for {!Bigarray.Genarray.create}. Each element [Array3.get b i j k] of the array is initialized to the result of [f i j k]. In other words, [Array3.init kind layout dim1 dim2 dim3 f] tabulates the results of [f] applied to the indices of a new Bigarray whose layout is described by [kind], [layout], [dim1], [dim2] and [dim3]. @since 4.12  F* Return the first dimension of the given three-dimensional Bigarray.  G* Return the second dimension of the given three-dimensional Bigarray.  F* Return the third dimension of the given three-dimensional Bigarray.  )* Return the kind of the given Bigarray.  +* Return the layout of the given Bigarray.  * [Array3.change_layout a layout] returns a Bigarray with the specified [layout], sharing the data with [a] (and hence having the same dimensions as [a]). No copying of elements is involved: the new array and the original array share the same storage space. The dimensions are reversed, such that [get v [| a; b; c |]] in C layout becomes [get v [| c+1; b+1; a+1 |]] in Fortran layout. @since 4.06  u* [size_in_bytes a] is the number of elements in [a] multiplied by [a]'s {!kind_size_in_bytes}. @since 4.03  * [Array3.get a x y z], also written [a.{x,y,z}], returns the element of [a] at coordinates ([x], [y], [z]). [x], [y] and [z] must be within the bounds of [a], as described for {!Bigarray.Genarray.get}; otherwise, [Invalid_argument] is raised. ꠠ * [Array3.set a x y v], or alternatively [a.{x,y,z} <- v], stores the value [v] at coordinates ([x], [y], [z]) in [a]. [x], [y] and [z] must be within the bounds of [a], as described for {!Bigarray.Genarray.set}; otherwise, [Invalid_argument] is raised. 1 * Extract a three-dimensional sub-array of the given three-dimensional Bigarray by restricting the first dimension. See {!Bigarray.Genarray.sub_left} for more details. [Array3.sub_left] applies only to arrays with C layout. u * Extract a three-dimensional sub-array of the given three-dimensional Bigarray by restricting the second dimension. See {!Bigarray.Genarray.sub_right} for more details. [Array3.sub_right] applies only to arrays with Fortran layout.  :* Extract a one-dimensional slice of the given three-dimensional Bigarray by fixing the first two coordinates. The integer parameters are the coordinates of the slice to extract. See {!Bigarray.Genarray.slice_left} for more details. [Array3.slice_left_1] applies only to arrays with C layout.  F* Extract a one-dimensional slice of the given three-dimensional Bigarray by fixing the last two coordinates. The integer parameters are the coordinates of the slice to extract. See {!Bigarray.Genarray.slice_right} for more details. [Array3.slice_right_1] applies only to arrays with Fortran layout. > 9* Extract a two-dimensional slice of the given three-dimensional Bigarray by fixing the first coordinate. The integer parameter is the first coordinate of the slice to extract. See {!Bigarray.Genarray.slice_left} for more details. [Array3.slice_left_2] applies only to arrays with C layout.  >* Extract a two-dimensional slice of the given three-dimensional Bigarray by fixing the last coordinate. The integer parameter is the coordinate of the slice to extract. See {!Bigarray.Genarray.slice_right} for more details. [Array3.slice_right_2] applies only to arrays with Fortran layout. 蠠 g* Copy the first Bigarray to the second Bigarray. See {!Bigarray.Genarray.blit} for more details. I e* Fill the given Bigarray with the given value. See {!Bigarray.Genarray.fill} for more details.  ɠ a* Build a three-dimensional Bigarray initialized from the given array of arrays of arrays.  R* Like {!Bigarray.Array3.get}, but bounds checking is not always performed.  R R* Like {!Bigarray.Array3.set}, but bounds checking is not always performed.  H* {1 Coercions between generic Bigarrays and fixed-dimension Bigarrays}  7 h* Return the generic Bigarray corresponding to the given zero-dimensional Bigarray. @since 4.05  l V* Return the generic Bigarray corresponding to the given one-dimensional Bigarray.  ͠ V* Return the generic Bigarray corresponding to the given two-dimensional Bigarray.  . X* Return the generic Bigarray corresponding to the given three-dimensional Bigarray.  * Return the zero-dimensional Bigarray corresponding to the given generic Bigarray. @raise Invalid_argument if the generic Bigarray does not have exactly zero dimension. @since 4.05  * Return the one-dimensional Bigarray corresponding to the given generic Bigarray. @raise Invalid_argument if the generic Bigarray does not have exactly one dimension. \ * Return the two-dimensional Bigarray corresponding to the given generic Bigarray. @raise Invalid_argument if the generic Bigarray does not have exactly two dimensions. à * Return the three-dimensional Bigarray corresponding to the given generic Bigarray. @raise Invalid_argument if the generic Bigarray does not have exactly three dimensions. *;* {1 Re-shaping Bigarrays}  3* [reshape b [|d1;...;dN|]] converts the Bigarray [b] to a [N]-dimensional array of dimensions [d1]...[dN]. The returned array and the original array [b] share their data and have the same layout. For instance, assuming that [b] is a one-dimensional array of dimension 12, [reshape b [|3;4|]] returns a two-dimensional array [b'] of dimensions 3 and 4. If [b] has C layout, the element [(x,y)] of [b'] corresponds to the element [x * 3 + y] of [b]. If [b] has Fortran layout, the element [(x,y)] of [b'] corresponds to the element [x + (y - 1) * 4] of [b]. The returned Bigarray must have exactly the same number of elements as the original Bigarray [b]. That is, the product of the dimensions of [b] must be equal to [i1 * ... * iN]. Otherwise, [Invalid_argument] is raised. b i* Specialized version of {!Bigarray.reshape} for reshaping to zero-dimensional arrays. @since 4.05 ɠ Y* Specialized version of {!Bigarray.reshape} for reshaping to one-dimensional arrays.  Y* Specialized version of {!Bigarray.reshape} for reshaping to two-dimensional arrays. a \* Specialized version of {!Bigarray.reshape} for reshaping to three-dimensional arrays.  L* {1:bigarray_concurrency Bigarrays and concurrency safety} Care must be taken when concurrently accessing bigarrays from multiple domains: accessing a bigarray will never crash a program, but unsynchronized accesses might yield surprising (non-sequentially-consistent) results. {2:bigarray_atomicity Atomicity} Every bigarray operation that accesses more than one array element is not atomic. This includes slicing, bliting, and filling bigarrays. For example, consider the following program: {[open Bigarray let size = 100_000_000 let a = Array1.init Int C_layout size (fun _ -> 1) let update f a () = for i = 0 to size - 1 do a.{i} <- f a.{i} done let d1 = Domain.spawn (update (fun x -> x + 1) a) let d2 = Domain.spawn (update (fun x -> 2 * x + 1) a) let () = Domain.join d1; Domain.join d2 ]} After executing this code, each field of the bigarray [a] is either [2], [3], [4] or [5]. If atomicity is required, then the user must implement their own synchronization (for example, using {!Mutex.t}). {2:bigarray_data_race Data races} If two domains only access disjoint parts of the bigarray, then the observed behaviour is the equivalent to some sequential interleaving of the operations from the two domains. A data race is said to occur when two domains access the same bigarray element without synchronization and at least one of the accesses is a write. In the absence of data races, the observed behaviour is equivalent to some sequential interleaving of the operations from different domains. Whenever possible, data races should be avoided by using synchronization to mediate the accesses to the bigarray elements. Indeed, in the presence of data races, programs will not crash but the observed behaviour may not be equivalent to any sequential interleaving of operations from different domains. {2:bigarrarray_data_race_tearing Tearing} Bigarrays have a distinct caveat in the presence of data races: concurrent bigarray operations might produce surprising values due to tearing. More precisely, the interleaving of partial writes and reads might create values that would not exist with a sequential execution. For instance, at the end of {[let res = Array1.init Complex64 c_layout size (fun _ -> Complex.zero) let d1 = Domain.spawn (fun () -> Array1.fill res Complex.one) let d2 = Domain.spawn (fun () -> Array1.fill res Complex.i) let () = Domain.join d1; Domain.join d2 ]} the [res] bigarray might contain values that are neither [Complex.i] nor [Complex.one] (for instance [1 + i]). w@?)../ocamlc0-strict-sequence(-absname"-w5+a-4-9-41-42-44-45-48"-g+-warn-error"+A*-bin-annot)-nostdlib*-principal"-o4stdlib__Bigarray.cmi"-cRxRy D/builds/workspace/precheck/flambda/false/label/ocaml-linux-32/stdlib @@05+=.-xnf3R}R|R|R}R}R}R}R}@R{@@8CamlinternalFormatBasics0%FU(Q/Tu&Stdlib0Lku]8_٠R0?ML@DE@OO|@@@I3IzMK@O˓O@(*T*ǰFG*@l JJ@@IJ?@@FRF?@  @@ݐ9(9[@S°ABYNʓM`@P+P&@@"7͐8e@@9p9z@1q2@GGOP@@MLP8PM@  0;0@'(:;P#PQQ%@ ΰP&P;@342@~NړMc@/H/NM@@?ؐ@x@$%+@++PPzQQ@!"|@@@!&!@N֓MR@@NM @ @HI.@@߰JJ@Q\Qq@  C/D @ NLPP@%ڐ&AO֒O@KÐL P˓P@2Ӗ2@@B͐C4@QyQt@O`N@Cְ@ 78&@AIAD>DFE@%%22E1Ed@F@@&'@,9,@NM.@@56E@F}F@ݐj   %$$@ # EEKϐL@FF@o Ű-.9QxQ@IR@@6x6ڰ>֐?kON[@*+2/N/@9J9װGqG@@S#6#((55QQ@@56QxQ@k #ِ$;H?H@Q<QQQQ@J@./aHI>@780@$ݐ-;-@@'(@TGYG|PΒPQQ@>U?P&N@FUF~@r!G.GQ@@@QQ@013@@@IoI@S<2<@*W*@@@JѐK@PP@@f@@@P@@