(**************************************************************************) (* *) (* OCaml *) (* *) (* Ulysse Gérard, Thomas Refis, Tarides *) (* *) (* Copyright 2021 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (** Shapes are an abstract representation of modules' implementations which allow the tracking of definitions through functor applications and other module-level operations. The Shape of a compilation unit is elaborated during typing, partially reduced (without loading external shapes) and written to the [cmt] file. External tools can retrieve the definition of any value (or type, or module, etc) by following this procedure: - Build the Shape corresponding to the value's path: [let shape = Env.shape_of_path ~namespace env path] - Instantiate the [Shape_reduce.Make] functor with a way to load shapes from external units and to looks for shapes in the environment (usually using [Env.shape_of_path]). - Completely reduce the shape: [let shape = My_reduce.(weak_)reduce env shape] - The [Uid.t] stored in the reduced shape should be the one of the definition. However, if the [approximate] field of the reduced shape is [true] then the [Uid.t] will not correspond to the definition, but to the closest parent module's uid. This happens when Shape reduction gets stuck, for example when hitting first-class modules. - The location of the definition can be easily found with the [cmt_format.cmt_uid_to_decl] table of the corresponding compilation unit. See: - {{:https://icfp22.sigplan.org/details/mlfamilyworkshop-2022-papers/10/Module-Shapes-for-Modern-Tooling} the design document} - {{:https://www.lix.polytechnique.fr/Labo/Gabriel.Scherer/research/shapes/2022-ml-workshop-shapes-talk.pdf} a talk about the reduction strategy *) (** A [Uid.t] is associated to every declaration in signatures and implementations. They uniquely identify bindings in the program. When associated with these bindings' locations they are useful to external tools when trying to jump to an identifier's declaration or definition. They are stored to that effect in the [uid_to_decl] table of cmt files. *) module Uid : sig type t = private | Compilation_unit of string | Item of { comp_unit: string; id: int; from: Unit_info.intf_or_impl } | Internal | Predef of string val reinit : unit -> unit val mk : current_unit:(Unit_info.t option) -> t val of_compilation_unit_id : Ident.t -> t val of_predef_id : Ident.t -> t val internal_not_actually_unique : t val for_actual_declaration : t -> bool include Identifiable.S with type t := t end module Sig_component_kind : sig type t = | Value | Type | Constructor | Label | Module | Module_type | Extension_constructor | Class | Class_type val to_string : t -> string (** Whether the name of a component of that kind can appear in a type. *) val can_appear_in_types : t -> bool end (** Shape's items are elements of a structure or, in the case of constructors and labels, elements of a record or variants definition seen as a structure. These structures model module components and nested types' constructors and labels. *) module Item : sig type t = string * Sig_component_kind.t val name : t -> string val kind : t -> Sig_component_kind.t val make : string -> Sig_component_kind.t -> t val value : Ident.t -> t val type_ : Ident.t -> t val constr : Ident.t -> t val label : Ident.t -> t val module_ : Ident.t -> t val module_type : Ident.t -> t val extension_constructor : Ident.t -> t val class_ : Ident.t -> t val class_type : Ident.t -> t val print : Format.formatter -> t -> unit module Map : Map.S with type key = t end type var = Ident.t type t = { uid: Uid.t option; desc: desc; approximated: bool } and desc = | Var of var | Abs of var * t | App of t * t | Struct of t Item.Map.t | Alias of t | Leaf | Proj of t * Item.t | Comp_unit of string | Error of string val print : Format.formatter -> t -> unit val strip_head_aliases : t -> t (* Smart constructors *) val for_unnamed_functor_param : var val fresh_var : ?name:string -> Uid.t -> var * t val var : Uid.t -> Ident.t -> t val abs : ?uid:Uid.t -> var -> t -> t val app : ?uid:Uid.t -> t -> arg:t -> t val str : ?uid:Uid.t -> t Item.Map.t -> t val alias : ?uid:Uid.t -> t -> t val proj : ?uid:Uid.t -> t -> Item.t -> t val leaf : Uid.t -> t val decompose_abs : t -> (var * t) option val for_persistent_unit : string -> t val leaf_for_unpack : t module Map : sig type shape = t type nonrec t = t Item.Map.t val empty : t val add : t -> Item.t -> shape -> t val add_value : t -> Ident.t -> Uid.t -> t val add_value_proj : t -> Ident.t -> shape -> t val add_type : t -> Ident.t -> shape -> t val add_type_proj : t -> Ident.t -> shape -> t val add_constr : t -> Ident.t -> shape -> t val add_constr_proj : t -> Ident.t -> shape -> t val add_label : t -> Ident.t -> Uid.t -> t val add_label_proj : t -> Ident.t -> shape -> t val add_module : t -> Ident.t -> shape -> t val add_module_proj : t -> Ident.t -> shape -> t val add_module_type : t -> Ident.t -> Uid.t -> t val add_module_type_proj : t -> Ident.t -> shape -> t val add_extcons : t -> Ident.t -> shape -> t val add_extcons_proj : t -> Ident.t -> shape -> t val add_class : t -> Ident.t -> Uid.t -> t val add_class_proj : t -> Ident.t -> shape -> t val add_class_type : t -> Ident.t -> Uid.t -> t val add_class_type_proj : t -> Ident.t -> shape -> t end val dummy_mod : t (** This function returns the shape corresponding to a given path. It requires a callback to find shapes in the environment. It is generally more useful to rely directly on the [Env.shape_of_path] function to get the shape associated with a given path. *) val of_path : find_shape:(Sig_component_kind.t -> Ident.t -> t) -> namespace:Sig_component_kind.t -> Path.t -> t val set_uid_if_none : t -> Uid.t -> t