\section{s:patterns}{Patterns} \ikwd{as\@\texttt{as}} %HEVEA\cutname{patterns.html} \begin{syntax} pattern: value-name | '_' | constant | pattern 'as' value-name | '(' pattern ')' | '(' pattern ':' typexpr ')' | pattern '|' pattern | constr pattern | "`"tag-name pattern | "#"typeconstr | pattern {{ ',' pattern }} | '{' field [':' typexpr] ['=' pattern]% { ';' field [':' typexpr] ['=' pattern] } [';' '_' ] [ ';' ] '}' | '[' pattern { ';' pattern } [ ';' ] ']' | pattern '::' pattern | '[|' pattern { ';' pattern } [ ';' ] '|]' | char-literal '..' char-literal | 'lazy' pattern | 'exception' pattern | module-path '.(' pattern ')' | module-path '.[' pattern ']' | module-path '.[|' pattern '|]' | module-path '.{' pattern '}' \end{syntax} See also the following language extensions: \hyperref[s:first-class-modules]{first-class modules}, \hyperref[s:attributes]{attributes}, \hyperref[s:extension-nodes]{extension nodes}, \hyperref[s:effect-handlers]{effect handlers}, \hyperref[s:array-literals]{type-directed disambiguation of array literals} and \hyperref[s:labeled-tuples]{labeled tuples}. The table below shows the relative precedences and associativity of operators and non-closed pattern constructions. The constructions with higher precedences come first. \ikwd{as\@\texttt{as}} \begin{tableau}{|l|l|}{Operator}{Associativity} \entree{".."}{--} \entree{"lazy" (see section~\ref{sss:pat-lazy})}{--} \entree{Constructor application, Tag application}{right} \entree{"::"}{right} \entree{","}{--} \entree{"|"}{left} \entree{"as"}{--} \end{tableau} Patterns are templates that allow selecting data structures of a given shape, and binding identifiers to components of the data structure. This selection operation is called pattern matching; its outcome is either ``this value does not match this pattern'', or ``this value matches this pattern, resulting in the following bindings of names to values''. \subsubsection*{sss:pat-variable}{Variable patterns} A pattern that consists in a value name matches any value, binding the name to the value. The pattern @"_"@ also matches any value, but does not bind any name. \begin{caml_example}{toplevel} let is_empty = function | [] -> true | _ :: _ -> false;; \end{caml_example} Patterns are {\em linear\/}: a variable cannot be bound several times by a given pattern. In particular, there is no way to test for equality between two parts of a data structure using only a pattern: \begin{caml_example}{toplevel}[error] let pair_equal = function | x, x -> true | x, y -> false;; \end{caml_example} However, we can use a @"when"@ guard for this purpose: \begin{caml_example}{toplevel} let pair_equal = function | x, y when x = y -> true | _ -> false;; \end{caml_example} \subsubsection*{sss:pat-const}{Constant patterns} A pattern consisting in a constant matches the values that are equal to this constant. \begin{caml_example}{toplevel} let bool_of_string = function | "true" -> true | "false" -> false | _ -> raise (Invalid_argument "bool_of_string");; \end{caml_example} %% FIXME for negative numbers, blanks are allowed between the minus %% sign and the first digit. \subsubsection*{sss:pat-alias}{Alias patterns} \ikwd{as\@\texttt{as}} The pattern @pattern_1 "as" value-name@ matches the same values as @pattern_1@. If the matching against @pattern_1@ is successful, the name @value-name@ is bound to the matched value, in addition to the bindings performed by the matching against @pattern_1@. \begin{caml_example}{toplevel} let sort_pair ((x, y) as p) = if x <= y then p else (y, x);; \end{caml_example} \subsubsection*{sss:pat-parenthesized}{Parenthesized patterns} The pattern @"(" pattern_1 ")"@ matches the same values as @pattern_1@. A type constraint can appear in a parenthesized pattern, as in @"(" pattern_1 ":" typexpr ")"@. This constraint forces the type of @pattern_1@ to be compatible with @typexpr@. \begin{caml_example}{toplevel} let int_triple_is_ordered ((a, b, c) : int * int * int) = a <= b && b <= c;; \end{caml_example} \subsubsection*{sss:pat-or}{``Or'' patterns} The pattern @pattern_1 "|" pattern_2@ represents the logical ``or'' of the two patterns @pattern_1@ and @pattern_2@. A value matches @pattern_1 "|" pattern_2@ if it matches @pattern_1@ or @pattern_2@. The two sub-patterns @pattern_1@ and @pattern_2@ must bind exactly the same identifiers to values having the same types. Matching is performed from left to right. More precisely, in case some value~$v$ matches @pattern_1 "|" pattern_2@, the bindings performed are those of @pattern_1@ when $v$ matches @pattern_1@. Otherwise, value~$v$ matches @pattern_2@ whose bindings are performed. \begin{caml_example}{toplevel} type shape = Square of float | Rect of (float * float) | Circle of float let is_rectangular = function | Square _ | Rect _ -> true | Circle _ -> false;; \end{caml_example} \subsubsection*{sss:pat-variant}{Variant patterns} The pattern @constr '(' pattern_1 ',' \ldots ',' pattern_n ')'@ matches all variants whose constructor is equal to @constr@, and whose arguments match @pattern_1 \ldots pattern_n@. It is a type error if $n$ is not the number of arguments expected by the constructor. The pattern @constr '_'@ matches all variants whose constructor is @constr@. \begin{caml_example}{toplevel} type 'a tree = Lf | Br of 'a tree * 'a * 'a tree let rec total = function | Br (l, x, r) -> total l + x + total r | Lf -> 0;; \end{caml_example} The pattern @pattern_1 "::" pattern_2@ matches non-empty lists whose heads match @pattern_1@, and whose tails match @pattern_2@. The pattern @"[" pattern_1 ";" \ldots ";" pattern_n "]"@ matches lists of length $n$ whose elements match @pattern_1@ \ldots @pattern_n@, respectively. This pattern behaves like @pattern_1 "::" \ldots "::" pattern_n "::" "[]"@. \begin{caml_example}{toplevel} let rec destutter = function | [] -> [] | [a] -> [a] | a :: b :: t -> if a = b then destutter (b :: t) else a :: destutter (b :: t);; \end{caml_example} \subsubsection*{sss:pat-polyvar}{Polymorphic variant patterns} The pattern @"`"tag-name pattern_1@ matches all polymorphic variants whose tag is equal to @tag-name@, and whose argument matches @pattern_1@. \begin{caml_example}{toplevel} let rec split = function | [] -> ([], []) | h :: t -> let ss, gs = split t in match h with | `Sheep _ as s -> (s :: ss, gs) | `Goat _ as g -> (ss, g :: gs);; \end{caml_example} \subsubsection*{sss:pat-polyvar-abbrev}{Polymorphic variant abbreviation patterns} If the type @["('a,'b,"\ldots")"] typeconstr = "[" "`"tag-name_1 typexpr_1 "|" \ldots "|" "`"tag-name_n typexpr_n"]"@ is defined, then the pattern @"#"typeconstr@ is a shorthand for the following or-pattern: @"(" "`"tag-name_1"(_" ":" typexpr_1")" "|" \ldots "|" "`"tag-name_n"(_" ":" typexpr_n"))"@. It matches all values of type @"[<" typeconstr "]"@. \begin{caml_example}{toplevel} type 'a rectangle = [`Square of 'a | `Rectangle of 'a * 'a] type 'a shape = [`Circle of 'a | 'a rectangle] let try_rectangle = function | #rectangle as r -> Some r | `Circle _ -> None;; \end{caml_example} \subsubsection*{sss:pat-tuple}{Tuple patterns} The pattern @pattern_1 "," \ldots "," pattern_n@ matches $n$-tuples whose components match the patterns @pattern_1@ through @pattern_n@. That is, the pattern matches the tuple values $(v_1, \ldots, v_n)$ such that @pattern_i@ matches $v_i$ for \fromoneto{i}{n}. \begin{caml_example}{toplevel} let vector (x0, y0) (x1, y1) = (x1 -. x0, y1 -. y0);; \end{caml_example} \subsubsection*{sss:pat-record}{Record patterns} The pattern @"{" field_1 ["=" pattern_1] ";" \ldots ";" field_n ["=" pattern_n] "}"@ matches records that define at least the fields @field_1@ through @field_n@, and such that the value associated to @field_i@ matches the pattern @pattern_i@, for \fromoneto{i}{n}. A single identifier @field_k@ stands for @field_k '=' field_k @, and a single qualified identifier @module-path '.' field_k@ stands for @module-path '.' field_k '=' field_k @. The record value can define more fields than @field_1@ \ldots @field_n@; the values associated to these extra fields are not taken into account for matching. Optionally, a record pattern can be terminated by @';' '_'@ to convey the fact that not all fields of the record type are listed in the record pattern and that it is intentional. Optional type constraints can be added field by field with @"{" field_1 ":" typexpr_1 "=" pattern_1 ";"% \ldots ";"field_n ":" typexpr_n "=" pattern_n "}"@ to force the type of @field_k@ to be compatible with @typexpr_k@. \begin{caml_example}{toplevel} let bytes_allocated {Gc.minor_words = minor; Gc.major_words = major; Gc.promoted_words = prom; _} = (Sys.word_size / 4) * int_of_float (minor +. major -. prom);; \end{caml_example} \subsubsection*{sss:pat-array}{Array patterns} The pattern @"[|" pattern_1 ";" \ldots ";" pattern_n "|]"@ matches arrays of length $n$ such that the $i$-th array element matches the pattern @pattern_i@, for \fromoneto{i}{n}. \begin{caml_example}{toplevel} let matrix3_is_symmetric = function | [|[|_; b; c|]; [|d; _; f|]; [|g; h; _|]|] -> b = d && c = g && f = h | _ -> failwith "matrix3_is_symmetric: not a 3x3 matrix";; \end{caml_example} \subsubsection*{sss:pat-range}{Range patterns} The pattern @"'" @c@ "'" ".." "'" @d@ "'"@ is a shorthand for the pattern \begin{center} @"'" @c@ "'" "|" "'" @c@_1 "'" "|" "'" @c@_2 "'" "|" \ldots "|" "'" @c@_n "'" "|" "'" @d@ "'"@ \end{center} where \nth{c}{1}, \nth{c}{2}, \ldots, \nth{c}{n} are the characters that occur between \var{c} and \var{d} in the ASCII character set. For instance, the pattern "'0'"@'..'@"'9'" matches all characters that are digits. \begin{caml_example}{toplevel} type char_class = Uppercase | Lowercase | Digit | Other let classify_char = function | 'A'..'Z' -> Uppercase | 'a'..'z' -> Lowercase | '0'..'9' -> Digit | _ -> Other;; \end{caml_example} \subsubsection{sss:pat-lazy}{Lazy patterns} \ikwd{lazy\@\texttt{lazy}} (Introduced in Objective Caml 3.11) The pattern @"lazy" pattern@ matches a value \var{v} of type "Lazy.t", provided @pattern@ matches the result of forcing \var{v} with "Lazy.force". A successful match of a pattern containing @"lazy"@ sub-patterns forces the corresponding parts of the value being matched, even those that imply no test such as @"lazy" value-name@ or @"lazy" "_"@. Matching a value with a @pattern-matching@ where some patterns contain @"lazy"@ sub-patterns may imply forcing parts of the value, even when the pattern selected in the end has no @"lazy"@ sub-pattern. \begin{caml_example}{toplevel} let force_opt = function | Some (lazy n) -> n | None -> 0;; \end{caml_example} For more information, see the description of module "Lazy" in the standard library (module \stdmoduleref{Lazy}). % \index{Lazy (module)\@\verb`Lazy` (module)}% \index{force\@\verb`force`}% \subsubsection*{sss:exception-match}{Exception patterns} (Introduced in OCaml 4.02) A new form of exception pattern, @ 'exception' pattern @, is allowed only as a toplevel pattern or inside a toplevel or-pattern under a "match"..."with" pattern-matching (other occurrences are rejected by the type-checker). Cases with such a toplevel pattern are called ``exception cases'', as opposed to regular ``value cases''. Exception cases are applied when the evaluation of the matched expression raises an exception. The exception value is then matched against all the exception cases and re-raised if none of them accept the exception (as with a "try"..."with" block). Since the bodies of all exception and value cases are outside the scope of the exception handler, they are all considered to be in tail-position: if the "match"..."with" block itself is in tail position in the current function, any function call in tail position in one of the case bodies results in an actual tail call. A pattern match must contain at least one value case. It is an error if all cases are exceptions, because there would be no code to handle the return of a value. \begin{caml_example}{toplevel} let find_opt p l = match List.find p l with | exception Not_found -> None | x -> Some x;; \end{caml_example} \subsubsection*{sss:pat-open}{Local opens for patterns} \ikwd{open\@\texttt{open}} (Introduced in OCaml 4.04) For patterns, local opens are limited to the @module-path'.('pattern')'@ construction. This construction locally opens the module referred to by the module path @module-path@ in the scope of the pattern @pattern@. When the body of a local open pattern is delimited by @'[' ']'@, @'[|' '|]'@, or @'{' '}'@, the parentheses can be omitted. For example, @module-path'.['pattern']'@ is equivalent to @module-path'.(['pattern'])'@, and @module-path'.[|' pattern '|]'@ is equivalent to @module-path'.([|' pattern '|])'@. \begin{caml_example}{toplevel} let bytes_allocated Gc.{minor_words; major_words; promoted_words; _} = (Sys.word_size / 4) * int_of_float (minor_words +. major_words -. promoted_words);; \end{caml_example}