(* TEST flags = "-g"; reason = "port stat-mem-prof : https://github.com/ocaml/ocaml/pull/8634"; *) module MP = Gc.Memprof let rec allocate_list accu = function | 0 -> accu | n -> allocate_list (n::accu) (n-1) let[@inline never] allocate_lists len cnt = for j = 0 to cnt-1 do ignore (Sys.opaque_identity (allocate_list [] len)) done let check_distrib len cnt rate = Printf.printf "check_distrib %d %d %f\n%!" len cnt rate; let tracked = ref 0 in let smp = ref 0 in let _:MP.t = MP.start ~callstack_size:10 ~sampling_rate:rate { MP.null_tracker with alloc_major = (fun _ -> assert false); alloc_minor = (fun info -> assert (info.size = 2); assert (info.n_samples > 0); assert (info.source = Normal); incr tracked; smp := !smp + info.n_samples; None); } in allocate_lists len cnt; MP.stop (); (* The probability distribution of the number of samples follows a binomial distribution of parameters tot_alloc and rate. Given that tot_alloc*rate and tot_alloc*(1-rate) are large (i.e., > 100), this distribution is approximately equal to a normal distribution. We compute a 1e-8 confidence interval for !smp using quantiles of the normal distribution, and check that we are in this confidence interval. *) let tot_alloc = float (cnt*len*3) in assert (tot_alloc *. rate > 100. && tot_alloc *. (1. -. rate) > 100.); let mean = tot_alloc *. rate in let stddev = sqrt (tot_alloc *. rate *. (1. -. rate)) in (* This should fail approximately one time in 100,000,000 *) assert (abs_float (mean -. float !smp) <= stddev *. 5.7) let () = check_distrib 10 1000000 0.01; check_distrib 1000000 10 0.00001; check_distrib 1000000 10 0.0001; check_distrib 1000000 10 0.001; check_distrib 1000000 10 0.01; check_distrib 100000 10 0.1; check_distrib 100000 10 0.9 let () = Printf.printf "OK !\n"