(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Operations on core types *) open Misc open Asttypes open Types open Data_types open Btype open Errortrace open Local_store (* General notes ============= - As much sharing as possible should be kept : it makes types smaller and better abbreviated. When necessary, some sharing can be lost. Types will still be printed correctly (+++ TO DO...), and abbreviations defined by a class do not depend on sharing thanks to constrained abbreviations. (Of course, even if some sharing is lost, typing will still be correct.) - All nodes of a type have a level : that way, one knows whether a node need to be duplicated or not when instantiating a type. - Levels of a type are decreasing (generic level being considered as greatest). - The level of a type constructor is superior to the binding time of its path. - Recursive types without limitation should be handled (even if there is still an occur check). This avoid treating specially the case for objects, for instance. Furthermore, the occur check policy can then be easily changed. *) (**** Errors ****) (* There are two classes of errortrace-related exceptions: *traces* and *errors*. The former, whose names end with [_trace], contain [Errortrace.trace]s, representing traces that are currently being built; they are local to this file. All the internal functions that implement unification, type equality, and moregen raise trace exceptions. Once we are done, in the top level functions such as [unify], [equal], and [moregen], we catch the trace exceptions and transform them into the analogous error exception. This indicates that we are done building the trace, and expect the error to flow out of unification, type equality, or moregen into surrounding code (with some few exceptions when these top-level functions are used as building blocks elsewhere.) Only the error exceptions are exposed in [ctype.mli]; the trace exceptions are an implementation detail. Any trace exception that escapes from a function in this file is a bug. *) exception Unify_trace of unification trace exception Equality_trace of comparison trace exception Moregen_trace of comparison trace exception Unify of unification_error exception Equality of equality_error exception Moregen of moregen_error exception Subtype of Subtype.error exception Escape of type_expr escape (* For local use: throw the appropriate exception. Can be passed into local functions as a parameter *) type _ trace_exn = | Unify : unification trace_exn | Moregen : comparison trace_exn | Equality : comparison trace_exn let raise_trace_for (type variant) (tr_exn : variant trace_exn) (tr : variant trace) : 'a = match tr_exn with | Unify -> raise (Unify_trace tr) | Equality -> raise (Equality_trace tr) | Moregen -> raise (Moregen_trace tr) (* Uses of this function are a bit suspicious, as we usually want to maintain trace information; sometimes it makes sense, however, since we're maintaining the trace at an outer exception handler. *) let raise_unexplained_for tr_exn = raise_trace_for tr_exn [] let raise_for tr_exn e = raise_trace_for tr_exn [e] (* Thrown from [moregen_kind] *) exception Public_method_to_private_method let escape kind = {kind; context = None} let escape_exn kind = Escape (escape kind) let scope_escape_exn ty = escape_exn (Equation ty) let raise_escape_exn kind = raise (escape_exn kind) let raise_scope_escape_exn ty = raise (scope_escape_exn ty) exception Tags of label * label let () = let open Format_doc in Location.register_error_of_exn (function | Tags (l, l') -> let pp_tag ppf s = fprintf ppf "`%s" s in let inline_tag = Misc.Style.as_inline_code pp_tag in Some Location. (errorf ~loc:(in_file !input_name) "In this program,@ variant constructors@ %a and %a@ \ have the same hash value.@ Change one of them." inline_tag l inline_tag l' ) | _ -> None ) exception Cannot_expand exception Cannot_apply exception Cannot_subst exception Cannot_unify_universal_variables exception Out_of_scope_universal_variable exception Matches_failure of Env.t * unification_error exception Incompatible (**** Control tracing of GADT instances *) let trace_gadt_instances = ref false let check_trace_gadt_instances ?(force=false) env = not !trace_gadt_instances && (force || Env.has_local_constraints env) && (trace_gadt_instances := true; cleanup_abbrev (); true) let reset_trace_gadt_instances b = if b then trace_gadt_instances := false let wrap_trace_gadt_instances ?force env f x = let b = check_trace_gadt_instances ?force env in Misc.try_finally (fun () -> f x) ~always:(fun () -> reset_trace_gadt_instances b) (**** Abbreviations without parameters ****) (* Shall reset after generalizing *) let simple_abbrevs = ref Mnil let proper_abbrevs tl abbrev = if tl <> [] || !trace_gadt_instances || !Clflags.principal then abbrev else simple_abbrevs (**** Type level management ****) let current_level = s_ref 0 let nongen_level = s_ref 0 let global_level = s_ref 0 let saved_level = s_ref [] let get_current_level () = !current_level let init_def level = current_level := level; nongen_level := level let begin_def () = saved_level := (!current_level, !nongen_level) :: !saved_level; incr current_level; nongen_level := !current_level let begin_class_def () = saved_level := (!current_level, !nongen_level) :: !saved_level; incr current_level let raise_nongen_level () = saved_level := (!current_level, !nongen_level) :: !saved_level; nongen_level := !current_level let end_def () = let (cl, nl) = List.hd !saved_level in saved_level := List.tl !saved_level; current_level := cl; nongen_level := nl let create_scope () = let level = !current_level + 1 in init_def level; level let wrap_end_def f = Misc.try_finally f ~always:end_def (* [with_local_level_gen] handles both the scoping structure of levels and automatic generalization through pools (cf. btype.ml) *) let with_local_level_gen ~begin_def ~structure ?before_generalize f = begin_def (); let level = !current_level in let result, pool = with_new_pool ~level:!current_level begin fun () -> let result = wrap_end_def f in Option.iter (fun g -> g result) before_generalize; result end in simple_abbrevs := Mnil; (* Nodes in [pool] were either created by the above calls to [f] and [before_generalize], or they were created before, generalized, and then added to the pool by [update_level]. In the latter case, their level was already kept for backtracking by a call to [set_level] inside [update_level]. Since backtracking can only go back to a snapshot taken before [f] was called, this means that either they did not exists in that snapshot, or that they original level is already stored, so that there is no need to register levels for backtracking when we change them with [Transient_expr.set_level] here *) List.iter begin fun ty -> (* Already generic nodes are not tracked *) if ty.level = generic_level then () else match ty.desc with | Tvar _ when structure -> (* In structure mode, we do do not generalize type variables, so we need to lower their level, and move them to an outer pool. The goal of this mode is to allow unsharing inner nodes without introducing polymorphism *) if ty.level >= level then Transient_expr.set_level ty !current_level; add_to_pool ~level:ty.level ty | Tlink _ -> () (* If a node is no longer used as representative, no need to track it anymore *) | _ -> if ty.level < level then (* If a node was introduced locally, but its level was lowered through unification, keeping that node as representative, then we need to move it to an outer pool. *) add_to_pool ~level:ty.level ty else begin (* Generalize all remaining nodes *) Transient_expr.set_level ty generic_level; if structure then match ty.desc with Tconstr (_, _, abbrev) -> (* In structure mode, we drop abbreviations, as the goal of this mode is to reduce sharing *) abbrev := Mnil | _ -> () end end pool; result let with_local_level_generalize_structure f = with_local_level_gen ~begin_def ~structure:true f let with_local_level_generalize ?before_generalize f = with_local_level_gen ~begin_def ~structure:false ?before_generalize f let with_local_level_generalize_if cond ?before_generalize f = if cond then with_local_level_generalize ?before_generalize f else f () let with_local_level_generalize_structure_if cond f = if cond then with_local_level_generalize_structure f else f () let with_local_level_generalize_structure_if_principal f = if !Clflags.principal then with_local_level_generalize_structure f else f () let with_local_level_generalize_for_class f = with_local_level_gen ~begin_def:begin_class_def ~structure:false f let with_local_level ?post f = begin_def (); let result = wrap_end_def f in Option.iter (fun g -> g result) post; result let with_local_level_if cond f ~post = if cond then with_local_level f ~post else f () let with_local_level_iter f ~post = begin_def (); let (result, l) = wrap_end_def f in List.iter post l; result let with_local_level_iter_if cond f ~post = if cond then with_local_level_iter f ~post else fst (f ()) let with_local_level_if_principal f ~post = with_local_level_if !Clflags.principal f ~post let with_local_level_iter_if_principal f ~post = with_local_level_iter_if !Clflags.principal f ~post let with_level ~level f = begin_def (); init_def level; wrap_end_def f let with_level_if cond ~level f = if cond then with_level ~level f else f () let with_local_level_for_class ?post f = begin_class_def (); let result = wrap_end_def f in Option.iter (fun g -> g result) post; result let with_raised_nongen_level f = raise_nongen_level (); wrap_end_def f let reset_global_level () = global_level := !current_level let increase_global_level () = let gl = !global_level in global_level := !current_level; gl let restore_global_level gl = global_level := gl (**** Some type creators ****) (* Re-export generic type creators *) let newty desc = newty2 ~level:!current_level desc let new_scoped_ty scope desc = newty3 ~level:!current_level ~scope desc let newvar ?name () = newty2 ~level:!current_level (Tvar name) let newvar2 ?name level = newty2 ~level:level (Tvar name) let new_global_var ?name () = newty2 ~level:!global_level (Tvar name) let newstub ~scope = newty3 ~level:!current_level ~scope (Tvar None) let newobj fields = newty (Tobject (fields, ref None)) let newconstr path tyl = newty (Tconstr (path, tyl, ref Mnil)) let none = newty (Ttuple []) (* Clearly ill-formed type *) (**** information for [Typecore.unify_pat_*] ****) module Pattern_env : sig type t = private { mutable env : Env.t; equations_scope : int; in_counterexample : bool; } val make: Env.t -> equations_scope:int -> in_counterexample:bool -> t val copy: ?equations_scope:int -> t -> t val set_env: t -> Env.t -> unit end = struct type t = { mutable env : Env.t; equations_scope : int; in_counterexample : bool; } let make env ~equations_scope ~in_counterexample = { env; equations_scope; in_counterexample; } let copy ?equations_scope penv = let equations_scope = match equations_scope with None -> penv.equations_scope | Some s -> s in { penv with equations_scope } let set_env penv env = penv.env <- env end (**** unification mode ****) type unification_environment = | Expression of { env : Env.t; in_subst : bool; } (* normal unification mode *) | Pattern of { penv : Pattern_env.t; equated_types : TypePairs.t; assume_injective : bool; unify_eq_set : TypePairs.t; } (* GADT constraint unification mode: only used for type indices of GADT constructors during pattern matching. This allows adding local constraints. *) let get_env = function | Expression {env} -> env | Pattern {penv} -> penv.env let set_env uenv env = match uenv with | Expression _ -> invalid_arg "Ctype.set_env" | Pattern {penv} -> Pattern_env.set_env penv env let in_pattern_mode = function | Expression _ -> false | Pattern _ -> true let get_equations_scope = function | Expression _ -> invalid_arg "Ctype.get_equations_scope" | Pattern r -> r.penv.equations_scope let order_type_pair t1 t2 = if get_id t1 <= get_id t2 then (t1, t2) else (t2, t1) let add_type_equality uenv t1 t2 = match uenv with | Expression _ -> invalid_arg "Ctype.add_type_equality" | Pattern r -> TypePairs.add r.unify_eq_set (order_type_pair t1 t2) let unify_eq uenv t1 t2 = eq_type t1 t2 || match uenv with | Expression _ -> false | Pattern r -> TypePairs.mem r.unify_eq_set (order_type_pair t1 t2) (* unification during type constructor expansion: This mode disables the propagation of the level and scope of the row variable to the whole type during the unification. (see unify_{row, fields} and PR #11771) *) let in_subst_mode = function | Expression {in_subst} -> in_subst | Pattern _ -> false (* Can only be called when generate_equations is true *) let record_equation uenv t1 t2 = match uenv with | Expression _ -> invalid_arg "Ctype.record_equation" | Pattern { equated_types } -> TypePairs.add equated_types (t1, t2) let can_assume_injective = function | Expression _ -> false | Pattern { assume_injective } -> assume_injective let in_counterexample uenv = match uenv with | Expression _ -> false | Pattern { penv } -> penv.in_counterexample let allow_recursive_equations uenv = !Clflags.recursive_types || in_counterexample uenv (* Though without_* functions can be in a direct style, CPS clarifies the structure of the code better. *) let without_assume_injective uenv f = match uenv with | Expression _ as uenv -> f uenv | Pattern r -> f (Pattern { r with assume_injective = false }) (*** Checks for type definitions ***) let rec in_current_module = function | Path.Pident _ -> true | Path.Pdot _ | Path.Papply _ -> false | Path.Pextra_ty (p, _) -> in_current_module p let in_pervasives p = in_current_module p && try ignore (Env.find_type p Env.initial); true with Not_found -> false let is_datatype decl= match decl.type_kind with Type_record _ | Type_variant _ | Type_open -> true | Type_abstract _ -> false (**********************************************) (* Miscellaneous operations on object types *) (**********************************************) (* Note: We need to maintain some invariants: * cty_self must be a Tobject * ... *) (**** Object field manipulation. ****) let object_fields ty = match get_desc ty with Tobject (fields, _) -> fields | _ -> assert false let flatten_fields ty = let rec flatten l ty = match get_desc ty with Tfield(s, k, ty1, ty2) -> flatten ((s, k, ty1)::l) ty2 | _ -> (l, ty) in let (l, r) = flatten [] ty in (List.sort (fun (n, _, _) (n', _, _) -> compare n n') l, r) let build_fields level = List.fold_right (fun (s, k, ty1) ty2 -> newty2 ~level (Tfield(s, k, ty1, ty2))) let associate_fields fields1 fields2 = let rec associate p s s' = function (l, []) -> (List.rev p, (List.rev s) @ l, List.rev s') | ([], l') -> (List.rev p, List.rev s, (List.rev s') @ l') | ((n, k, t)::r, (n', k', t')::r') when n = n' -> associate ((n, k, t, k', t')::p) s s' (r, r') | ((n, k, t)::r, ((n', _k', _t')::_ as l')) when n < n' -> associate p ((n, k, t)::s) s' (r, l') | (((_n, _k, _t)::_ as l), (n', k', t')::r') (* when n > n' *) -> associate p s ((n', k', t')::s') (l, r') in associate [] [] [] (fields1, fields2) (**** Check whether an object is open ****) (* +++ The abbreviation should eventually be expanded *) let rec object_row ty = match get_desc ty with Tobject (t, _) -> object_row t | Tfield(_, _, _, t) -> object_row t | _ -> ty let opened_object ty = match get_desc (object_row ty) with | Tvar _ | Tunivar _ | Tconstr _ -> true | _ -> false let concrete_object ty = match get_desc (object_row ty) with | Tvar _ -> false | _ -> true (**** Row variable of an object type ****) let rec fields_row_variable ty = match get_desc ty with | Tfield (_, _, _, ty) -> fields_row_variable ty | Tvar _ -> ty | _ -> assert false (**** Object name manipulation ****) (* +++ Bientot obsolete *) let set_object_name id params ty = match get_desc ty with | Tobject (fi, nm) -> let rv = fields_row_variable fi in set_name nm (Some (Path.Pident id, rv::params)) | Tconstr (_, _, _) -> () | _ -> fatal_error "Ctype.set_object_name" let remove_object_name ty = match get_desc ty with Tobject (_, nm) -> set_name nm None | Tconstr (_, _, _) -> () | _ -> fatal_error "Ctype.remove_object_name" (*******************************************) (* Miscellaneous operations on row types *) (*******************************************) let sort_row_fields = List.sort (fun (p,_) (q,_) -> compare p q) let rec merge_rf r1 r2 pairs fi1 fi2 = match fi1, fi2 with (l1,f1 as p1)::fi1', (l2,f2 as p2)::fi2' -> if l1 = l2 then merge_rf r1 r2 ((l1,f1,f2)::pairs) fi1' fi2' else if l1 < l2 then merge_rf (p1::r1) r2 pairs fi1' fi2 else merge_rf r1 (p2::r2) pairs fi1 fi2' | [], _ -> (List.rev r1, List.rev_append r2 fi2, pairs) | _, [] -> (List.rev_append r1 fi1, List.rev r2, pairs) let merge_row_fields fi1 fi2 = match fi1, fi2 with [], _ | _, [] -> (fi1, fi2, []) | [p1], _ when not (List.mem_assoc (fst p1) fi2) -> (fi1, fi2, []) | _, [p2] when not (List.mem_assoc (fst p2) fi1) -> (fi1, fi2, []) | _ -> merge_rf [] [] [] (sort_row_fields fi1) (sort_row_fields fi2) let rec filter_row_fields erase = function [] -> [] | (_l,f as p)::fi -> let fi = filter_row_fields erase fi in match row_field_repr f with Rabsent -> fi | Reither(_,_,false) when erase -> link_row_field_ext ~inside:f rf_absent; fi | _ -> p :: fi (**************************************) (* Check genericity of type schemes *) (**************************************) type variable_kind = Row_variable | Type_variable exception Non_closed of type_expr * variable_kind (* [free_vars] walks over the variables of the input type expression. It is used for several different things in the type-checker, with the following bells and whistles: - If [env] is Some typing environment, types in the environment are expanded to check whether the apparently-free variable would vanish during expansion. - We do not count "virtual" free variables -- free variables stored in the abbreviation of an object type that has been expanded (we store the abbreviations for use when displaying the type). [free_vars] accumulates its answer in a monoid-like structure, with an initial element [zero] and a combining function [add_one], passing [add_one] information about whether the variable is a normal type variable or a row variable. *) let free_vars ~init ~add_one ?env mark ty = let rec fv ~kind acc ty = if not (try_mark_node mark ty) then acc else match get_desc ty, env with | Tvar _, _ -> add_one ty kind acc | Tconstr (path, tl, _), Some env -> let acc = match Env.find_type_expansion path env with | exception Not_found -> acc | (_, body, _) -> if get_level body = generic_level then acc else add_one ty kind acc in List.fold_left (fv ~kind:Type_variable) acc tl | Tobject (ty, _), _ -> (* ignoring the second parameter of [Tobject] amounts to not counting "virtual free variables". *) fv ~kind:Row_variable acc ty | Tfield (_, _, ty1, ty2), _ -> let acc = fv ~kind:Type_variable acc ty1 in fv ~kind:Row_variable acc ty2 | Tvariant row, _ -> let acc = fold_row (fv ~kind:Type_variable) acc row in if static_row row then acc else fv ~kind:Row_variable acc (row_more row) | _ -> fold_type_expr (fv ~kind) acc ty in fv ~kind:Type_variable init ty let free_variables ?env ty = let add_one ty _kind acc = ty :: acc in with_type_mark (fun mark -> free_vars ~init:[] ~add_one ?env mark ty) let free_variables_list ?env tyl = let add_one ty _kind acc = ty :: acc in with_type_mark (fun mark -> List.fold_left (fun acc ty -> free_vars ~init:acc ~add_one ?env mark ty) [] tyl) let closed_type ?env mark ty = let add_one ty kind _acc = raise (Non_closed (ty, kind)) in free_vars ~init:() ~add_one ?env mark ty let closed_type_expr ?env ty = with_type_mark (fun mark -> try closed_type ?env mark ty; true with Non_closed _ -> false) let closed_parameterized_type params ty = with_type_mark begin fun mark -> List.iter (mark_type mark) params; try closed_type mark ty; true with Non_closed _ -> false end let closed_type_decl decl = with_type_mark begin fun mark -> try List.iter (mark_type mark) decl.type_params; begin match decl.type_kind with Type_abstract _ -> () | Type_variant (v, _rep) -> List.iter (fun {cd_args; cd_res; _} -> match cd_res with | Some _ -> () | None -> match cd_args with | Cstr_tuple l -> List.iter (closed_type mark) l | Cstr_record l -> List.iter (fun l -> closed_type mark l.ld_type) l ) v | Type_record(r, _rep) -> List.iter (fun l -> closed_type mark l.ld_type) r | Type_open -> () end; begin match decl.type_manifest with None -> () | Some ty -> closed_type mark ty end; None with Non_closed (ty, _) -> Some ty end let closed_extension_constructor ext = with_type_mark begin fun mark -> try List.iter (mark_type mark) ext.ext_type_params; begin match ext.ext_ret_type with | Some _ -> () | None -> iter_type_expr_cstr_args (closed_type mark) ext.ext_args end; None with Non_closed (ty, _) -> Some ty end type closed_class_failure = { free_variable: type_expr * variable_kind; meth: string; meth_ty: type_expr; } exception CCFailure of closed_class_failure let closed_class params sign = with_type_mark begin fun mark -> List.iter (mark_type mark) params; ignore (try_mark_node mark sign.csig_self_row); try Meths.iter (fun lab (priv, _, ty) -> if priv = Mpublic then begin try closed_type mark ty with Non_closed (ty0, variable_kind) -> raise (CCFailure { free_variable = (ty0, variable_kind); meth = lab; meth_ty = ty; }) end) sign.csig_meths; None with CCFailure reason -> Some reason end (**********************) (* Type duplication *) (**********************) (* Duplicate a type, preserving only type variables *) let duplicate_type ty = Subst.type_expr Subst.identity ty (* Same, for class types *) let duplicate_class_type ty = Subst.class_type Subst.identity ty (*****************************) (* Type level manipulation *) (*****************************) (* Build a copy of a type in which nodes reachable through a path composed only of Tarrow, Tpoly, Ttuple, Tpackage and Tconstr, and whose level was no lower than [!current_level], are at [generic_level]. This is different from [with_local_level_gen], which generalizes in place, and only nodes with a level higher than [!current_level]. This is used for typing classes, to indicate which types have been inferred in the first pass, and can be considered as "known" during the second pass. *) let rec copy_spine copy_scope ty = match get_desc ty with | Tsubst (ty, _) -> ty | Tvar _ | Tfield _ | Tnil | Tvariant _ | Tobject _ | Tlink _ | Tunivar _ -> ty | (Tarrow _ | Tpoly _ | Ttuple _ | Tpackage _ | Tconstr _) as desc -> let level = get_level ty in if level < !current_level || level = generic_level then ty else let t = newgenstub ~scope:(get_scope ty) in For_copy.redirect_desc copy_scope ty (Tsubst (t, None)); let copy_rec = copy_spine copy_scope in let desc' = match desc with | Tarrow (lbl, ty1, ty2, _) -> Tarrow (lbl, copy_rec ty1, copy_rec ty2, commu_ok) | Tpoly (ty', tvl) -> Tpoly (copy_rec ty', tvl) | Ttuple tyl -> Ttuple (List.map (fun (lbl, ty) -> (lbl, copy_rec ty)) tyl) | Tpackage {pack_path; pack_cstrs} -> let fl = List.map (fun (n, ty) -> n, copy_rec ty) pack_cstrs in Tpackage {pack_path; pack_cstrs = fl} | Tconstr (path, tyl, _) -> Tconstr (path, List.map copy_rec tyl, ref Mnil) | _ -> assert false in Transient_expr.set_stub_desc t desc'; t let copy_spine ty = For_copy.with_scope (fun copy_scope -> copy_spine copy_scope ty) let forward_try_expand_safe = (* Forward declaration *) ref (fun _env _ty -> assert false) (* Lower the levels of a type (assume [level] is not [generic_level]). *) let rec normalize_package_path env p = let t = try (Env.find_modtype p env).mtd_type with Not_found -> None in match t with | Some (Mty_ident p) -> normalize_package_path env p | Some (Mty_signature _ | Mty_functor _ | Mty_alias _) | None -> match p with Path.Pdot (p1, s) -> (* For module aliases *) let p1' = Env.normalize_module_path None env p1 in if Path.same p1 p1' then p else normalize_package_path env (Path.Pdot (p1', s)) | _ -> p let rec check_scope_escape mark env level ty = let orig_level = get_level ty in if try_mark_node mark ty then begin if level < get_scope ty then raise_scope_escape_exn ty; begin match get_desc ty with | Tconstr (p, _, _) when level < Path.scope p -> begin match !forward_try_expand_safe env ty with | ty' -> check_scope_escape mark env level ty' | exception Cannot_expand -> raise_escape_exn (Constructor p) end | Tpackage ({pack_path = p} as pack) when level < Path.scope p -> let p' = normalize_package_path env p in if Path.same p p' then raise_escape_exn (Module_type p); check_scope_escape mark env level (newty2 ~level:orig_level (Tpackage {pack with pack_path = p'})) | _ -> iter_type_expr (check_scope_escape mark env level) ty end; end let check_scope_escape env level ty = with_type_mark begin fun mark -> try check_scope_escape mark env level ty with Escape e -> raise (Escape { e with context = Some ty }) end let rec update_scope scope ty = if get_scope ty < scope then begin if get_level ty < scope then raise_scope_escape_exn ty; set_scope ty scope; (* Only recurse in principal mode as this is not necessary for soundness *) if !Clflags.principal then iter_type_expr (update_scope scope) ty end let update_scope_for tr_exn scope ty = try update_scope scope ty with Escape e -> raise_for tr_exn (Escape e) (* Note: the level of a type constructor must be greater than its binding time. That way, a type constructor cannot escape the scope of its definition, as would be the case in let x = ref [] module M = struct type t let _ = (x : t list ref) end (without this constraint, the type system would actually be unsound.) *) let rec update_level env level expand ty = let ty_level = get_level ty in if ty_level > level then begin if level < get_scope ty then raise_scope_escape_exn ty; let set_level () = set_level ty level; if ty_level = generic_level then add_to_pool ~level (Transient_expr.repr ty) in match get_desc ty with Tconstr(p, _tl, _abbrev) when level < Path.scope p -> (* Try first to replace an abbreviation by its expansion. *) begin try let ty' = !forward_try_expand_safe env ty in link_type ty ty'; update_level env level expand ty' with Cannot_expand -> raise_escape_exn (Constructor p) end | Tconstr(p, (_ :: _ as tl), _) -> let variance = try (Env.find_type p env).type_variance with Not_found -> List.map (fun _ -> Variance.unknown) tl in let needs_expand = expand || List.exists2 (fun var ty -> var = Variance.null && get_level ty > level) variance tl in begin try if not needs_expand then raise Cannot_expand; let ty' = !forward_try_expand_safe env ty in link_type ty ty'; update_level env level expand ty' with Cannot_expand -> set_level (); iter_type_expr (update_level env level expand) ty end | Tpackage ({pack_path = p} as pack) when level < Path.scope p -> let p' = normalize_package_path env p in if Path.same p p' then raise_escape_exn (Module_type p); set_type_desc ty (Tpackage {pack with pack_path = p'}); update_level env level expand ty | Tobject (_, ({contents=Some(p, _tl)} as nm)) when level < Path.scope p -> set_name nm None; update_level env level expand ty | Tvariant row -> begin match row_name row with | Some (p, _tl) when level < Path.scope p -> set_type_desc ty (Tvariant (set_row_name row None)) | _ -> () end; set_level (); iter_type_expr (update_level env level expand) ty | Tfield(lab, _, ty1, _) when lab = dummy_method && level < get_scope ty1 -> raise_escape_exn Self | _ -> set_level (); (* XXX what about abbreviations in Tconstr ? *) iter_type_expr (update_level env level expand) ty end (* First try without expanding, then expand everything, to avoid combinatorial blow-up *) let update_level env level ty = if get_level ty > level then begin let snap = snapshot () in try update_level env level false ty with Escape _ -> backtrack snap; update_level env level true ty end let update_level_for tr_exn env level ty = try update_level env level ty with Escape e -> raise_for tr_exn (Escape e) (* Lower level of type variables inside contravariant branches *) let rec lower_contravariant env var_level visited contra ty = let must_visit = get_level ty > var_level && match Hashtbl.find visited (get_id ty) with | done_contra -> contra && not done_contra | exception Not_found -> true in if must_visit then begin Hashtbl.add visited (get_id ty) contra; let lower_rec = lower_contravariant env var_level visited in match get_desc ty with Tvar _ -> if contra then set_level ty var_level | Tconstr (_, [], _) -> () | Tconstr (path, tyl, _abbrev) -> let variance, maybe_expand = try let typ = Env.find_type path env in typ.type_variance, type_kind_is_abstract typ with Not_found -> (* See testsuite/tests/typing-missing-cmi-2 for an example *) List.map (fun _ -> Variance.unknown) tyl, false in if List.for_all ((=) Variance.null) variance then () else let not_expanded () = List.iter2 (fun v t -> if v = Variance.null then () else if Variance.(mem May_weak v) then lower_rec true t else lower_rec contra t) variance tyl in if maybe_expand then (* we expand cautiously to avoid missing cmis *) match !forward_try_expand_safe env ty with | ty -> lower_rec contra ty | exception Cannot_expand -> not_expanded () else not_expanded () | Tpackage p -> List.iter (fun (_n, ty) -> lower_rec true ty) p.pack_cstrs | Tarrow (_, t1, t2, _) -> lower_rec true t1; lower_rec contra t2 | _ -> iter_type_expr (lower_rec contra) ty end let lower_variables_only env level ty = simple_abbrevs := Mnil; lower_contravariant env level (Hashtbl.create 7) true ty let lower_contravariant env ty = simple_abbrevs := Mnil; lower_contravariant env !nongen_level (Hashtbl.create 7) false ty let rec generalize_class_type gen = function Cty_constr (_, params, cty) -> List.iter gen params; generalize_class_type gen cty | Cty_signature csig -> gen csig.csig_self; gen csig.csig_self_row; Vars.iter (fun _ (_, _, ty) -> gen ty) csig.csig_vars; Meths.iter (fun _ (_, _, ty) -> gen ty) csig.csig_meths | Cty_arrow (_, ty, cty) -> gen ty; generalize_class_type gen cty (* Only generalize the type ty0 in ty *) let limited_generalize ty0 ~inside:ty = let graph = TypeHash.create 17 in let roots = ref [] in let rec inverse pty ty = match TypeHash.find_opt graph ty with | Some parents -> parents := pty @ !parents | None -> let level = get_level ty in if level > !current_level then begin TypeHash.add graph ty (ref pty); (* XXX: why generic_level needs to be a root *) if (level = generic_level) || eq_type ty ty0 then roots := ty :: !roots; iter_type_expr (inverse [ty]) ty end in let rec generalize_parents ~is_root ty = if is_root || get_level ty <> generic_level then begin set_level ty generic_level; List.iter (generalize_parents ~is_root:false) !(TypeHash.find graph ty); (* Special case for rows: must generalize the row variable *) match get_desc ty with Tvariant row -> let more = row_more row in let lv = get_level more in if (TypeHash.mem graph more || lv > !current_level) && lv <> generic_level then set_level more generic_level | _ -> () end in inverse [] ty; List.iter (generalize_parents ~is_root:true) !roots; TypeHash.iter (fun ty _ -> if get_level ty <> generic_level then set_level ty !current_level) graph let limited_generalize_class_type rv ~inside:cty = generalize_class_type (fun inside -> limited_generalize rv ~inside) cty (* Compute statically the free univars of all nodes in a type *) (* This avoids doing it repeatedly during instantiation *) type inv_type_expr = { inv_type : type_expr; mutable inv_parents : inv_type_expr list } let rec inv_type hash pty ty = try let inv = TypeHash.find hash ty in inv.inv_parents <- pty @ inv.inv_parents with Not_found -> let inv = { inv_type = ty; inv_parents = pty } in TypeHash.add hash ty inv; iter_type_expr (inv_type hash [inv]) ty let compute_univars ty = let inverted = TypeHash.create 17 in inv_type inverted [] ty; let node_univars = TypeHash.create 17 in let rec add_univar univ inv = match get_desc inv.inv_type with Tpoly (_ty, tl) when List.memq (get_id univ) (List.map get_id tl) -> () | _ -> try let univs = TypeHash.find node_univars inv.inv_type in if not (TypeSet.mem univ !univs) then begin univs := TypeSet.add univ !univs; List.iter (add_univar univ) inv.inv_parents end with Not_found -> TypeHash.add node_univars inv.inv_type (ref(TypeSet.singleton univ)); List.iter (add_univar univ) inv.inv_parents in TypeHash.iter (fun ty inv -> if is_Tunivar ty then add_univar ty inv) inverted; fun ty -> try !(TypeHash.find node_univars ty) with Not_found -> TypeSet.empty let fully_generic ty = with_type_mark begin fun mark -> let rec aux ty = if try_mark_node mark ty then if get_level ty = generic_level then iter_type_expr aux ty else raise Exit in try aux ty; true with Exit -> false end (*******************) (* Instantiation *) (*******************) let rec find_repr p1 = function Mnil -> None | Mcons (Public, p2, ty, _, _) when Path.same p1 p2 -> Some ty | Mcons (_, _, _, _, rem) -> find_repr p1 rem | Mlink {contents = rem} -> find_repr p1 rem (* Generic nodes are duplicated, while non-generic nodes are left as-is. During instantiation, the result of copying a generic node is "cached" in-place by temporarily mutating the node description by a stub [Tsubst (newvar ())] using [For_copy.redirect_desc]. The scope of this mutation is determined by the [copy_scope] parameter, and the [For_copy.with_scope] helper is in charge of creating a new scope and performing the necessary book-keeping -- in particular reverting the in-place updates after the instantiation is done. *) let abbreviations = ref (ref Mnil) (* Abbreviation memorized. *) (* partial: we may not wish to copy the non generic types before we call type_pat *) let rec copy ?partial ?keep_names copy_scope ty = let copy = copy ?partial ?keep_names copy_scope in match get_desc ty with Tsubst (ty, _) -> ty | desc -> let level = get_level ty in if level <> generic_level && partial = None then ty else (* We only forget types that are non generic and do not contain free univars *) let forget = if level = generic_level then generic_level else match partial with None -> assert false | Some (free_univars, keep) -> if TypeSet.is_empty (free_univars ty) then if keep then level else !current_level else generic_level in if forget <> generic_level then newty2 ~level:forget (Tvar None) else let t = newstub ~scope:(get_scope ty) in For_copy.redirect_desc copy_scope ty (Tsubst (t, None)); let desc' = match desc with | Tconstr (p, tl, _) -> let abbrevs = proper_abbrevs tl !abbreviations in begin match find_repr p !abbrevs with Some ty when not (eq_type ty t) -> Tlink ty | _ -> (* One must allocate a new reference, so that abbrevia- tions belonging to different branches of a type are independent. Moreover, a reference containing a [Mcons] must be shared, so that the memorized expansion of an abbrevi- ation can be released by changing the content of just one reference. *) Tconstr (p, List.map copy tl, ref (match !(!abbreviations) with Mcons _ -> Mlink !abbreviations | abbrev -> abbrev)) end | Tvariant row -> let more = row_more row in let mored = get_desc more in (* We must substitute in a subtle way *) (* Tsubst takes a tuple containing the row var and the variant *) begin match mored with Tsubst (_, Some ty2) -> (* This variant type has been already copied *) (* Change the stub to avoid Tlink in the new type *) For_copy.redirect_desc copy_scope ty (Tsubst (ty2, None)); Tlink ty2 | _ -> (* If the row variable is not generic, we must keep it *) let keep = get_level more <> generic_level && partial = None in let more' = match mored with Tsubst (ty, None) -> ty (* TODO: is this case possible? possibly an interaction with (copy more) below? *) | Tconstr _ | Tnil -> copy more | Tvar _ | Tunivar _ -> if keep then more else newty mored | _ -> assert false in let row = match get_desc more' with (* PR#6163 *) Tconstr (x,_,_) when not (is_fixed row) -> let Row {fields; more; closed; name} = row_repr row in create_row ~fields ~more ~closed ~name ~fixed:(Some (Reified x)) | _ -> row in (* Open row if partial for pattern and contains Reither *) let more', row = match partial with Some (free_univars, false) -> let not_reither (_, f) = match row_field_repr f with Reither _ -> false | _ -> true in let fields = row_fields row in if row_closed row && not (is_fixed row) && TypeSet.is_empty (free_univars ty) && not (List.for_all not_reither fields) then let more' = newvar () in (more', create_row ~fields:(List.filter not_reither fields) ~more:more' ~closed:false ~fixed:None ~name:None) else (more', row) | _ -> (more', row) in (* Register new type first for recursion *) For_copy.redirect_desc copy_scope more (Tsubst(more', Some t)); (* Return a new copy *) Tvariant (copy_row copy true row keep more') end | Tobject (ty1, _) when partial <> None -> Tobject (copy ty1, ref None) | _ -> copy_type_desc ?keep_names copy desc in Transient_expr.set_stub_desc t desc'; t (**** Variants of instantiations ****) let instance ?partial sch = let partial = match partial with None -> None | Some keep -> Some (compute_univars sch, keep) in For_copy.with_scope (fun copy_scope -> copy ?partial copy_scope sch) let generic_instance sch = with_level ~level:generic_level (fun () -> instance sch) let instance_list schl = For_copy.with_scope (fun copy_scope -> List.map (fun t -> copy copy_scope t) schl) (* Create unique names to new type constructors. Used for existential types and local constraints. *) let get_new_abstract_name env s = let name index = if index = 0 && s <> "" && s.[String.length s - 1] <> '$' then s else Printf.sprintf "%s%d" s index in let check index = match Env.find_type_by_name (Longident.Lident (name index)) env with | _ -> false | exception Not_found -> true in let index = Misc.find_first_mono check in name index let new_local_type ?(loc = Location.none) ?manifest_and_scope origin = let manifest, expansion_scope = match manifest_and_scope with None -> None, Btype.lowest_level | Some (ty, scope) -> Some ty, scope in { type_params = []; type_arity = 0; type_kind = Type_abstract origin; type_private = Public; type_manifest = manifest; type_variance = []; type_separability = []; type_is_newtype = true; type_expansion_scope = expansion_scope; type_loc = loc; type_attributes = []; type_immediate = Unknown; type_unboxed_default = false; type_uid = Uid.mk ~current_unit:(Env.get_current_unit ()); } let existential_name name_counter ty = let name = match get_desc ty with | Tvar (Some name) -> name | _ -> let name = Misc.letter_of_int !name_counter in incr name_counter; name in "$" ^ name type existential_treatment = | Keep_existentials_flexible | Make_existentials_abstract of Pattern_env.t let instance_constructor existential_treatment cstr = For_copy.with_scope (fun copy_scope -> let name_counter = ref 0 in let copy_existential = match existential_treatment with | Keep_existentials_flexible -> copy copy_scope | Make_existentials_abstract penv -> fun existential -> let env = penv.env in let fresh_constr_scope = penv.equations_scope in let decl = new_local_type (Existential cstr.cstr_name) in let name = existential_name name_counter existential in let (id, new_env) = Env.enter_type (get_new_abstract_name env name) decl env ~scope:fresh_constr_scope in Pattern_env.set_env penv new_env; let to_unify = newty (Tconstr (Path.Pident id,[],ref Mnil)) in let tv = copy copy_scope existential in assert (is_Tvar tv); link_type tv to_unify; tv in let ty_ex = List.map copy_existential cstr.cstr_existentials in let ty_res = copy copy_scope cstr.cstr_res in let ty_args = List.map (copy copy_scope) cstr.cstr_args in (ty_args, ty_res, ty_ex) ) let instance_parameterized_type ?keep_names sch_args sch = For_copy.with_scope (fun copy_scope -> let ty_args = List.map (fun t -> copy ?keep_names copy_scope t) sch_args in let ty = copy copy_scope sch in (ty_args, ty) ) let map_kind f = function | Type_abstract r -> Type_abstract r | Type_open -> Type_open | Type_variant (cl, rep) -> Type_variant ( List.map (fun c -> {c with cd_args = map_type_expr_cstr_args f c.cd_args; cd_res = Option.map f c.cd_res }) cl, rep) | Type_record (fl, rr) -> Type_record ( List.map (fun l -> {l with ld_type = f l.ld_type} ) fl, rr) let instance_declaration decl = For_copy.with_scope (fun copy_scope -> {decl with type_params = List.map (copy copy_scope) decl.type_params; type_manifest = Option.map (copy copy_scope) decl.type_manifest; type_kind = map_kind (copy copy_scope) decl.type_kind; } ) let generic_instance_declaration decl = with_level ~level:generic_level (fun () -> instance_declaration decl) let instance_class params cty = let rec copy_class_type copy_scope = function | Cty_constr (path, tyl, cty) -> let tyl' = List.map (copy copy_scope) tyl in let cty' = copy_class_type copy_scope cty in Cty_constr (path, tyl', cty') | Cty_signature sign -> Cty_signature {csig_self = copy copy_scope sign.csig_self; csig_self_row = copy copy_scope sign.csig_self_row; csig_vars = Vars.map (function (m, v, ty) -> (m, v, copy copy_scope ty)) sign.csig_vars; csig_meths = Meths.map (function (p, v, ty) -> (p, v, copy copy_scope ty)) sign.csig_meths} | Cty_arrow (l, ty, cty) -> Cty_arrow (l, copy copy_scope ty, copy_class_type copy_scope cty) in For_copy.with_scope (fun copy_scope -> let params' = List.map (copy copy_scope) params in let cty' = copy_class_type copy_scope cty in (params', cty') ) (**** Instantiation for types with free universal variables ****) (* [copy_sep] is used to instantiate first-class polymorphic types. * It first makes a separate copy of the type as a graph, omitting nodes that have no free univars. * In this first pass, [visited] is used as a mapping for previously visited nodes, and must already contain all the free univars in [ty]. * The remaining (univar-closed) parts of the type are then instantiated with [copy] using a common [copy_scope]. The reason to work in two passes lies in recursive types such as: [let h (x : < m : 'a. < n : 'a; p : 'b > > as 'b) = x#m] The type of [x#m] should be: [ < n : 'c; p : < m : 'a. < n : 'a; p : 'b > > as 'b > ] I.e., the universal type variable ['a] is both instantiated as a fresh type variable ['c] when outside of its binder, and kept as universal when under its binder. Assumption: in the first call to [copy_sep], all the free univars should be bound by the same [Tpoly] node. This guarantees that they are only bound when under this [Tpoly] node, which has no free univars, and as such is not part of the separate copy. In turn, this allows the separate copy to keep the sharing of the original type without breaking its binding structure. *) let copy_sep ~copy_scope ~fixed ~(visited : type_expr TypeHash.t) sch = let free = compute_univars sch in let delayed_copies = ref [] in let add_delayed_copy t ty = delayed_copies := (fun () -> Transient_expr.set_stub_desc t (Tlink (copy copy_scope ty))) :: !delayed_copies in let rec copy_rec ~may_share (ty : type_expr) = let univars = free ty in if is_Tvar ty || may_share && TypeSet.is_empty univars then if get_level ty <> generic_level then ty else let t = newstub ~scope:(get_scope ty) in add_delayed_copy t ty; t else try TypeHash.find visited ty with Not_found -> begin let t = newstub ~scope:(get_scope ty) in TypeHash.add visited ty t; let desc' = match get_desc ty with | Tvariant row -> let more = row_more row in (* We shall really check the level on the row variable *) let keep = is_Tvar more && get_level more <> generic_level in (* In that case we should keep the original, but we still call copy to correct the levels *) if keep then (add_delayed_copy t ty; Tvar None) else let more' = copy_rec ~may_share:false more in let fixed' = fixed && (is_Tvar more || is_Tunivar more) in let row = copy_row (copy_rec ~may_share:true) fixed' row keep more' in Tvariant row | Tfield (p, k, ty1, ty2) -> (* the kind is kept shared, see Btype.copy_type_desc *) Tfield (p, field_kind_internal_repr k, copy_rec ~may_share:true ty1, copy_rec ~may_share:false ty2) | desc -> copy_type_desc (copy_rec ~may_share:true) desc in Transient_expr.set_stub_desc t desc'; t end in let ty = copy_rec ~may_share:true sch in List.iter (fun force -> force ()) !delayed_copies; ty let instance_poly' copy_scope ~keep_names ~fixed univars sch = (* In order to compute univars below, [sch] should not contain [Tsubst] *) let copy_var ty = match get_desc ty with Tunivar name -> if keep_names then newty (Tvar name) else newvar () | _ -> assert false in let vars = List.map copy_var univars in let visited = TypeHash.create 17 in List.iter2 (TypeHash.add visited) univars vars; let ty = copy_sep ~copy_scope ~fixed ~visited sch in vars, ty let instance_poly ?(keep_names=false) ~fixed univars sch = For_copy.with_scope (fun copy_scope -> instance_poly' copy_scope ~keep_names ~fixed univars sch ) let instance_label ~fixed lbl = For_copy.with_scope (fun copy_scope -> let vars, ty_arg = match get_desc lbl.lbl_arg with Tpoly (ty, tl) -> instance_poly' copy_scope ~keep_names:false ~fixed tl ty | _ -> [], copy copy_scope lbl.lbl_arg in (* call [copy] after [instance_poly] to avoid introducing [Tsubst] *) let ty_res = copy copy_scope lbl.lbl_res in (vars, ty_arg, ty_res) ) (**** Instantiation with parameter substitution ****) (* NB: since this is [unify_var], it raises [Unify], not [Unify_trace] *) let unify_var' = (* Forward declaration *) ref (fun _env _ty1 _ty2 -> assert false) let subst env level priv abbrev oty params args body = if List.length params <> List.length args then raise Cannot_subst; with_level ~level begin fun () -> let body0 = newvar () in (* Stub *) let undo_abbrev = match oty with | None -> fun () -> () (* No abbreviation added *) | Some ty -> match get_desc ty with Tconstr (path, tl, _) -> let abbrev = proper_abbrevs tl abbrev in memorize_abbrev abbrev priv path ty body0; fun () -> forget_abbrev abbrev path | _ -> assert false in abbreviations := abbrev; let (params', body') = instance_parameterized_type params body in abbreviations := ref Mnil; let uenv = Expression {env; in_subst = true} in try !unify_var' uenv body0 body'; List.iter2 (!unify_var' uenv) params' args; body' with Unify _ -> undo_abbrev (); raise Cannot_subst end (* Default to generic level. Usually, only the shape of the type matters, not whether it is generic or not. [generic_level] might be somewhat slower, but it ensures invariants on types are enforced (decreasing levels), and we don't care about efficiency here. *) let apply ?(use_current_level = false) env params body args = simple_abbrevs := Mnil; let level = if use_current_level then !current_level else generic_level in try subst env level Public (ref Mnil) None params args body with Cannot_subst -> raise Cannot_apply (****************************) (* Abbreviation expansion *) (****************************) (* If the environment has changed, memorized expansions might not be correct anymore, and so we flush the cache. The test used checks whether any of types, modules, or local constraints have been changed. *) let previous_env = ref Env.empty (*let string_of_kind = function Public -> "public" | Private -> "private"*) let check_abbrev_env env = if not (Env.same_type_declarations env !previous_env) then begin (* prerr_endline "cleanup expansion cache"; *) cleanup_abbrev (); simple_abbrevs := Mnil; previous_env := env end (* Expand an abbreviation. The expansion is memorized. *) (* Assume the level is greater than the path binding time of the expanded abbreviation. *) (* An abbreviation expansion will fail in either of these cases: 1. The type constructor does not correspond to a manifest type. 2. The type constructor is defined in an external file, and this file is not in the path (missing -I options). 3. The type constructor is not in the "local" environment. This can happens when a non-generic type variable has been instantiated afterwards to the not yet defined type constructor. (Actually, this cannot happen at the moment due to the strong constraints between type levels and constructor binding time.) 4. The expansion requires the expansion of another abbreviation, and this other expansion fails. *) let expand_abbrev_gen kind find_type_expansion env ty = let path, args, abbrev = match get_desc ty with | Tconstr (path,args,abbrev) -> path, args, abbrev | _ -> assert false in check_abbrev_env env; let level = get_level ty in let scope = get_scope ty in let lookup_abbrev = proper_abbrevs args abbrev in let expansion = (* first look for an existing expansion *) match find_expans kind path !lookup_abbrev with | None -> None | Some ty' -> try (* prerr_endline ("found a "^string_of_kind kind^" expansion for "^Path.name path);*) if level <> generic_level then update_level env level ty'; update_scope scope ty'; Some ty' with Escape _ -> (* in case of Escape, discard the stale expansion and re-expand *) forget_abbrev lookup_abbrev path; None in begin match expansion with | Some ty' -> ty' | None -> (* attempt to (re-)expand *) match find_type_expansion path env with | exception Not_found -> (* another way to expand is to normalize the path itself *) let path' = Env.normalize_type_path None env path in if Path.same path path' then raise Cannot_expand else newty2 ~level (Tconstr (path', args, abbrev)) | (params, body, lv) -> (* prerr_endline ("add a "^string_of_kind kind^" expansion for "^Path.name path);*) let ty' = try subst env level kind abbrev (Some ty) params args body with Cannot_subst -> raise_escape_exn Constraint in (* For gadts, remember type as non exportable *) (* The ambiguous level registered for ty' should be the highest *) (* if !trace_gadt_instances then begin *) let scope = Int.max lv (get_scope ty) in update_scope scope ty; update_scope scope ty'; ty' end (* Expand respecting privacy *) let expand_abbrev env ty = expand_abbrev_gen Public Env.find_type_expansion env ty (* Expand once the head of a type *) let expand_head_once env ty = try expand_abbrev env ty with Cannot_expand | Escape _ -> assert false (* Check whether a type can be expanded *) let safe_abbrev env ty = let snap = Btype.snapshot () in try ignore (expand_abbrev env ty); true with Cannot_expand -> Btype.backtrack snap; false | Escape _ -> Btype.backtrack snap; cleanup_abbrev (); false (* Expand the head of a type once. Raise Cannot_expand if the type cannot be expanded. May raise Escape, if a recursion was hidden in the type. *) let try_expand_once env ty = match get_desc ty with Tconstr _ -> expand_abbrev env ty | _ -> raise Cannot_expand (* This one only raises Cannot_expand *) let try_expand_safe env ty = let snap = Btype.snapshot () in try try_expand_once env ty with Escape _ -> Btype.backtrack snap; cleanup_abbrev (); raise Cannot_expand (* Fully expand the head of a type. *) let rec try_expand_head (try_once : Env.t -> type_expr -> type_expr) env ty = let ty' = try_once env ty in try try_expand_head try_once env ty' with Cannot_expand -> ty' (* Unsafe full expansion, may raise [Unify [Escape _]]. *) let expand_head_unif env ty = try try_expand_head try_expand_once env ty with | Cannot_expand -> ty | Escape e -> raise_for Unify (Escape e) (* Safe version of expand_head, never fails *) let expand_head env ty = try try_expand_head try_expand_safe env ty with Cannot_expand -> ty let _ = forward_try_expand_safe := try_expand_safe (* Expand until we find a non-abstract type declaration, use try_expand_safe to avoid raising "Unify _" when called on recursive types *) type typedecl_extraction_result = | Typedecl of Path.t * Path.t * type_declaration | Has_no_typedecl | May_have_typedecl let rec extract_concrete_typedecl env ty = match get_desc ty with Tconstr (p, _, _) -> begin match Env.find_type p env with | exception Not_found -> May_have_typedecl | decl -> if not (type_kind_is_abstract decl) then Typedecl(p, p, decl) else begin match try_expand_safe env ty with | exception Cannot_expand -> May_have_typedecl | ty -> match extract_concrete_typedecl env ty with | Typedecl(_, p', decl) -> Typedecl(p, p', decl) | Has_no_typedecl -> Has_no_typedecl | May_have_typedecl -> May_have_typedecl end end | Tpoly(ty, _) -> extract_concrete_typedecl env ty | Tarrow _ | Ttuple _ | Tobject _ | Tfield _ | Tnil | Tvariant _ | Tpackage _ -> Has_no_typedecl | Tvar _ | Tunivar _ -> May_have_typedecl | Tlink _ | Tsubst _ -> assert false (* Implementing function [expand_head_opt], the compiler's own version of [expand_head] used for type-based optimisations. [expand_head_opt] uses [Env.find_type_expansion_opt] to access the manifest type information of private abstract data types which is normally hidden to the type-checker out of the implementation module of the private abbreviation. *) let expand_abbrev_opt env ty = expand_abbrev_gen Private Env.find_type_expansion_opt env ty let safe_abbrev_opt env ty = let snap = Btype.snapshot () in try ignore (expand_abbrev_opt env ty); true with Cannot_expand | Escape _ -> Btype.backtrack snap; false let try_expand_once_opt env ty = match get_desc ty with Tconstr _ -> expand_abbrev_opt env ty | _ -> raise Cannot_expand let try_expand_safe_opt env ty = let snap = Btype.snapshot () in try try_expand_once_opt env ty with Escape _ -> Btype.backtrack snap; raise Cannot_expand let expand_head_opt env ty = try try_expand_head try_expand_safe_opt env ty with Cannot_expand -> ty (* Recursively expand the head of a type. Also expand #-types. Error printing relies on [full_expand] returning exactly its input (i.e., a physically equal type) when nothing changes. *) let full_expand ~may_forget_scope env ty = let ty = if may_forget_scope then try expand_head_unif env ty with Unify_trace _ -> (* #10277: forget scopes when printing trace *) with_level ~level:(get_level ty) begin fun () -> (* The same as [expand_head], except in the failing case we return the *original* type, not [duplicate_type ty].*) try try_expand_head try_expand_safe env (duplicate_type ty) with | Cannot_expand -> ty end else expand_head env ty in match get_desc ty with Tobject (fi, {contents = Some (_, v::_)}) when is_Tvar v -> newty2 ~level:(get_level ty) (Tobject (fi, ref None)) | _ -> ty (* Check whether the abbreviation expands to a well-defined type. During the typing of a class, abbreviations for correspondings types expand to non-generic types. *) let generic_abbrev env path = try let (_, body, _) = Env.find_type_expansion path env in get_level body = generic_level with Not_found -> false let generic_private_abbrev env path = try match Env.find_type path env with {type_kind = Type_abstract _; type_private = Private; type_manifest = Some body} -> get_level body = generic_level | _ -> false with Not_found -> false let is_contractive env p = try let decl = Env.find_type p env in in_pervasives p && decl.type_manifest = None || is_datatype decl with Not_found -> false (*****************) (* Occur check *) (*****************) exception Occur let rec occur_rec env visited allow_recursive parents ty0 ty = if not_marked_node visited ty then begin if eq_type ty ty0 then raise Occur; begin match get_desc ty with Tconstr(p, _tl, _abbrev) -> if allow_recursive && is_contractive env p then () else begin try if TypeSet.mem ty parents then raise Occur; let parents = TypeSet.add ty parents in iter_type_expr (occur_rec env visited allow_recursive parents ty0) ty with Occur -> try let ty' = try_expand_head try_expand_safe env ty in (* This call used to be inlined, but there seems no reason for it. Message was referring to change in rev. 1.58 of the CVS repo. *) occur_rec env visited allow_recursive parents ty0 ty' with Cannot_expand -> raise Occur end | Tobject _ | Tvariant _ -> () | _ -> if allow_recursive || TypeSet.mem ty parents then () else begin let parents = TypeSet.add ty parents in iter_type_expr (occur_rec env visited allow_recursive parents ty0) ty end end; ignore (try_mark_node visited ty) end let type_changed = ref false (* trace possible changes to the studied type *) let merge r b = if b then r := true let occur uenv ty0 ty = let env = get_env uenv in let allow_recursive = allow_recursive_equations uenv in let old = !type_changed in try while type_changed := false; if not (eq_type ty0 ty) then with_type_mark (fun mark -> occur_rec env mark allow_recursive TypeSet.empty ty0 ty); !type_changed do () (* prerr_endline "changed" *) done; merge type_changed old with exn -> merge type_changed old; raise exn let occur_for tr_exn uenv t1 t2 = try occur uenv t1 t2 with Occur -> raise_for tr_exn (Rec_occur(t1, t2)) let occur_in env ty0 t = try occur (Expression {env; in_subst = false}) ty0 t; false with Occur -> true (* Check that a local constraint is well-founded *) (* PR#6405: not needed since we allow recursion and work on normalized types *) (* PR#6992: we actually need it for contractiveness *) (* This is a simplified version of occur, only for the rectypes case *) let rec local_non_recursive_abbrev ~allow_rec strict visited env p ty = (*Format.eprintf "@[Check %s =@ %a@]@." (Path.name p) !Btype.print_raw ty;*) if not (List.memq (get_id ty) visited) then begin match get_desc ty with Tconstr(p', args, _abbrev) -> if Path.same p p' then raise Occur; if allow_rec && not strict && is_contractive env p' then () else let visited = get_id ty :: visited in begin try (* try expanding, since [p] could be hidden *) local_non_recursive_abbrev ~allow_rec strict visited env p (try_expand_head try_expand_safe_opt env ty) with Cannot_expand -> let params = try (Env.find_type p' env).type_params with Not_found -> args in List.iter2 (fun tv ty -> let strict = strict || not (is_Tvar tv) in local_non_recursive_abbrev ~allow_rec strict visited env p ty) params args end | Tobject _ | Tvariant _ when not strict -> () | _ -> if strict || not allow_rec then (* PR#7374 *) let visited = get_id ty :: visited in iter_type_expr (local_non_recursive_abbrev ~allow_rec true visited env p) ty end let local_non_recursive_abbrev uenv p ty = let env = get_env uenv in let allow_rec = allow_recursive_equations uenv in try (* PR#7397: need to check trace_gadt_instances *) wrap_trace_gadt_instances env (local_non_recursive_abbrev ~allow_rec false [] env p) ty; true with Occur -> false (*****************************) (* Polymorphic Unification *) (*****************************) (* Polymorphic unification is hard in the presence of recursive types. A correctness argument for the approach below can be made by reference to "Numbering matters: first-order canonical forms for second-order recursive types" (ICFP'04) by Gauthier & Pottier. That work describes putting numbers on nodes; we do not do that here, but instead make a decision about whether to abort or continue based on the comparison of the numbers if we calculated them. A different approach would actually store the relevant numbers in the [Tpoly] nodes. (The algorithm here actually pre-dates that paper, which was developed independently. But reading and understanding the paper will help guide intuition for reading this algorithm nonetheless.) *) (* Since we cannot duplicate universal variables, unification must be done at meta-level, using bindings in univar_pairs *) let rec unify_univar t1 t2 = function (cl1, cl2) :: rem -> let find_univ t cl = List.find_map (fun (t', r) -> if eq_type t t' then Some r else None ) cl in begin match find_univ t1 cl1, find_univ t2 cl2 with Some {contents=Some t'2}, Some _ when eq_type t2 t'2 -> () | Some({contents=None} as r1), Some({contents=None} as r2) -> set_univar r1 t2; set_univar r2 t1 | None, None -> unify_univar t1 t2 rem | _ -> raise Cannot_unify_universal_variables end | [] -> raise Out_of_scope_universal_variable (* The same as [unify_univar], but raises the appropriate exception instead of [Cannot_unify_universal_variables] *) let unify_univar_for (type a) (tr_exn : a trace_exn) t1 t2 univar_pairs = try unify_univar t1 t2 univar_pairs with | Cannot_unify_universal_variables -> raise_unexplained_for tr_exn | Out_of_scope_universal_variable -> (* Allow unscoped univars when checking for equality, since one might want to compare arbitrary subparts of types, ignoring scopes; see Typedecl_variance (#13514) for instance *) match tr_exn with | Equality -> raise_unexplained_for tr_exn | _ -> fatal_error "Ctype.unify_univar_for: univar not in scope" (* Test the occurrence of free univars in a type *) (* That's way too expensive. Must do some kind of caching *) (* If [inj_only=true], only check injective positions *) let occur_univar ?(inj_only=false) env ty = let visited = ref TypeMap.empty in with_type_mark begin fun mark -> let rec occur_rec bound ty = if not_marked_node mark ty then if TypeSet.is_empty bound then (ignore (try_mark_node mark ty); occur_desc bound ty) else try let bound' = TypeMap.find ty !visited in if not (TypeSet.subset bound' bound) then begin visited := TypeMap.add ty (TypeSet.inter bound bound') !visited; occur_desc bound ty end with Not_found -> visited := TypeMap.add ty bound !visited; occur_desc bound ty and occur_desc bound ty = match get_desc ty with Tunivar _ -> if not (TypeSet.mem ty bound) then raise_escape_exn (Univ ty) | Tpoly (ty, tyl) -> let bound = List.fold_right TypeSet.add tyl bound in occur_rec bound ty | Tconstr (_, [], _) -> () | Tconstr (p, tl, _) -> begin try let td = Env.find_type p env in List.iter2 (fun t v -> (* The null variance only occurs in type abbreviations and corresponds to type variables that do not occur in the definition (expansion would erase them completely). The type-checker consistently ignores type expressions in this position. Physical expansion, as done in `occur`, would be costly here, since we need to check inside object and variant types too. *) if Variance.(if inj_only then mem Inj v else not (eq v null)) then occur_rec bound t) tl td.type_variance with Not_found -> if not inj_only then List.iter (occur_rec bound) tl end | _ -> iter_type_expr (occur_rec bound) ty in occur_rec TypeSet.empty ty end let has_free_univars env ty = try occur_univar ~inj_only:false env ty; false with Escape _ -> true let has_injective_univars env ty = try occur_univar ~inj_only:true env ty; false with Escape _ -> true let occur_univar_for tr_exn env ty = try occur_univar env ty with Escape e -> raise_for tr_exn (Escape e) (* Grouping univars by families according to their binders *) let add_univars = List.fold_left (fun s (t,_) -> TypeSet.add t s) let get_univar_family univar_pairs univars = if univars = [] then TypeSet.empty else let insert s = function cl1, (_::_ as cl2) -> if List.exists (fun (t1,_) -> TypeSet.mem t1 s) cl1 then add_univars s cl2 else s | _ -> s in let s = List.fold_right TypeSet.add univars TypeSet.empty in List.fold_left insert s univar_pairs (* Whether a family of univars escapes from a type *) let univars_escape env univar_pairs vl ty = let family = get_univar_family univar_pairs vl in with_type_mark begin fun mark -> let rec occur t = if try_mark_node mark t then begin match get_desc t with Tpoly (t, tl) -> if List.exists (fun t -> TypeSet.mem t family) tl then () else occur t | Tunivar _ -> if TypeSet.mem t family then raise_escape_exn (Univ t) | Tconstr (_, [], _) -> () | Tconstr (p, tl, _) -> begin try let td = Env.find_type p env in List.iter2 (* see occur_univar *) (fun t v -> if not Variance.(eq v null) then occur t) tl td.type_variance with Not_found -> List.iter occur tl end | _ -> iter_type_expr occur t end in occur ty end let univar_pairs = ref [] let with_univar_pairs pairs f = let old = !univar_pairs in univar_pairs := pairs; Misc.try_finally f ~always:(fun () -> univar_pairs := old) (* Wrapper checking that no variable escapes and updating univar_pairs *) let enter_poly env t1 tl1 t2 tl2 f = let old_univars = !univar_pairs in let known_univars = List.fold_left (fun s (cl,_) -> add_univars s cl) TypeSet.empty old_univars in if List.exists (fun t -> TypeSet.mem t known_univars) tl1 then univars_escape env old_univars tl1 (newty(Tpoly(t2,tl2))); if List.exists (fun t -> TypeSet.mem t known_univars) tl2 then univars_escape env old_univars tl2 (newty(Tpoly(t1,tl1))); let cl1 = List.map (fun t -> t, ref None) tl1 and cl2 = List.map (fun t -> t, ref None) tl2 in with_univar_pairs ((cl1,cl2) :: (cl2,cl1) :: old_univars) (fun () -> f t1 t2) let enter_poly_for tr_exn env t1 tl1 t2 tl2 f = try enter_poly env t1 tl1 t2 tl2 f with Escape e -> raise_for tr_exn (Escape e) (**** Instantiate a generic type into a poly type ***) let polyfy env ty vars = let subst_univar copy_scope ty = match get_desc ty with | Tvar name when get_level ty = generic_level -> let t = newty (Tunivar name) in For_copy.redirect_desc copy_scope ty (Tsubst (t, None)); Some t | _ -> None in (* need to expand twice? cf. Ctype.unify2 *) let vars = List.map (expand_head env) vars in let vars = List.map (expand_head env) vars in For_copy.with_scope (fun copy_scope -> let vars' = List.filter_map (subst_univar copy_scope) vars in let ty = copy copy_scope ty in let ty = newty2 ~level:(get_level ty) (Tpoly(ty, vars')) in let complete = List.length vars = List.length vars' in ty, complete ) (* assumption: [ty] is fully generalized. *) let reify_univars env ty = let vars = free_variables ty in let ty, _ = polyfy env ty vars in ty (*****************) (* Unification *) (*****************) let rec has_cached_expansion p abbrev = match abbrev with Mnil -> false | Mcons(_, p', _, _, rem) -> Path.same p p' || has_cached_expansion p rem | Mlink rem -> has_cached_expansion p !rem (**** Transform error trace ****) (* +++ Move it to some other place ? *) (* That's hard to do because it relies on the expansion machinery in Ctype, but still might be nice. *) let expand_type env ty = { ty = ty; expanded = full_expand ~may_forget_scope:true env ty } let expand_any_trace map env trace = map (expand_type env) trace let expand_trace env trace = expand_any_trace Errortrace.map env trace let expand_subtype_trace env trace = expand_any_trace Subtype.map env trace let expand_to_unification_error env trace = unification_error ~trace:(expand_trace env trace) let expand_to_equality_error env trace subst = equality_error ~trace:(expand_trace env trace) ~subst let expand_to_moregen_error env trace = moregen_error ~trace:(expand_trace env trace) (* [expand_trace] and the [expand_to_*_error] functions take care of most of the expansion in this file, but we occasionally need to build [Errortrace.error]s in other ways/elsewhere, so we expose some machinery for doing so *) (* Equivalent to [expand_trace env [Diff {got; expected}]] for a single element *) let expanded_diff env ~got ~expected = Diff (map_diff (expand_type env) {got; expected}) (* Diff while transforming a [type_expr] into an [expanded_type] without expanding *) let unexpanded_diff ~got ~expected = Diff (map_diff trivial_expansion {got; expected}) (**** Unification ****) (* Return whether [t0] occurs in [ty]. Objects are also traversed. *) let rec deep_occur_rec mark t0 ty = if get_level ty >= get_level t0 && try_mark_node mark ty then begin if eq_type ty t0 then raise Occur; iter_type_expr (deep_occur_rec mark t0) ty end let deep_occur t0 ty = try with_type_mark (fun mark -> deep_occur_rec mark t0 ty); false with | Occur -> true let deep_occur_list t0 tyl = try with_type_mark (fun mark -> List.iter (deep_occur_rec mark t0) tyl); false with | Occur -> true (* A local constraint can be added only if the rhs of the constraint does not contain any Tvars. They need to be removed using this function. This function is called only in [Pattern] mode. *) let reify uenv t = let fresh_constr_scope = get_equations_scope uenv in let create_fresh_constr lev name = let name = match name with Some s -> "$'"^s | _ -> "$" in let decl = new_local_type Definition in let env = get_env uenv in let new_name = (* unique names are needed only for error messages *) if in_counterexample uenv then name else get_new_abstract_name env name in let (id, new_env) = Env.enter_type new_name decl env ~scope:fresh_constr_scope in let path = Path.Pident id in let t = newty2 ~level:lev (Tconstr (path,[],ref Mnil)) in set_env uenv new_env; path, t in let visited = ref TypeSet.empty in let rec iterator ty = if TypeSet.mem ty !visited then () else begin visited := TypeSet.add ty !visited; match get_desc ty with Tvar o -> let level = get_level ty in let path, t = create_fresh_constr level o in link_type ty t; if level < fresh_constr_scope then raise_for Unify (Escape (escape (Constructor path))) | Tvariant r -> if not (static_row r) then begin if is_fixed r then iterator (row_more r) else let m = row_more r in match get_desc m with Tvar o -> let level = get_level m in let path, t = create_fresh_constr level o in let row = let fixed = Some (Reified path) in create_row ~fields:[] ~more:t ~fixed ~name:(row_name r) ~closed:(row_closed r) in link_type m (newty2 ~level (Tvariant row)); if level < fresh_constr_scope then raise_for Unify (Escape (escape (Constructor path))) | _ -> assert false end; iter_row iterator r | _ -> iter_type_expr iterator ty end in iterator t let find_expansion_scope env path = match Env.find_type path env with | { type_manifest = None ; _ } | exception Not_found -> generic_level | decl -> decl.type_expansion_scope let non_aliasable p decl = (* in_pervasives p || (subsumed by in_current_module) *) in_current_module p && not decl.type_is_newtype let is_instantiable env p = try let decl = Env.find_type p env in type_kind_is_abstract decl && decl.type_private = Public && decl.type_arity = 0 && decl.type_manifest = None && not (non_aliasable p decl) with Not_found -> false let compatible_paths p1 p2 = let open Predef in Path.same p1 p2 || Path.same p1 path_bytes && Path.same p2 path_string || Path.same p1 path_string && Path.same p2 path_bytes (* Two labels are considered compatible under certain conditions. - they are the same - in classic mode, only optional labels are relavant - in pattern mode, we act as if we were in classic mode. If not, interactions with GADTs from files compiled in classic mode would be unsound. *) let compatible_labels ~in_pattern_mode l1 l2 = l1 = l2 || (!Clflags.classic || in_pattern_mode) && not (is_optional l1 || is_optional l2) let eq_labels error_mode ~in_pattern_mode l1 l2 = if not (compatible_labels ~in_pattern_mode l1 l2) then raise_for error_mode (Function_label_mismatch {got=l1; expected=l2}) (* Check for datatypes carefully; see PR#6348 *) let rec expands_to_datatype env ty = match get_desc ty with Tconstr (p, _, _) -> begin try is_datatype (Env.find_type p env) || expands_to_datatype env (try_expand_safe env ty) with Not_found | Cannot_expand -> false end | _ -> false (* [mcomp] tests if two types are "compatible" -- i.e., if there could exist a witness of their equality. This is distinct from [eqtype], which checks if two types *are* exactly the same. [mcomp] is used to decide whether GADT cases are unreachable. The existence of a witness is necessarily an incomplete property, i.e. there exists types for which we cannot tell if an equality witness could exist or not. Typically, this is the case for abstract types, which could be equal to anything, depending on their actual definition. As a result [mcomp] overapproximates compatibilty, i.e. when it says that two types are incompatible, we are sure that there exists no equality witness, but if it does not say so, there is no guarantee that such a witness could exist. *) (* [mcomp type_pairs subst env t1 t2] should not raise an exception if it is possible that t1 and t2 are actually equal, assuming the types in type_pairs are equal and that the mapping subst holds. Assumes that both t1 and t2 do not contain any tvars and that both their objects and variants are closed *) let rec mcomp type_pairs env t1 t2 = if eq_type t1 t2 then () else match (get_desc t1, get_desc t2) with | (Tvar _, _) | (_, Tvar _) -> () | (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 -> () | _ -> let t1' = expand_head_opt env t1 in let t2' = expand_head_opt env t2 in (* Expansion may have changed the representative of the types... *) if eq_type t1' t2' then () else if not (TypePairs.mem type_pairs (t1', t2')) then begin TypePairs.add type_pairs (t1', t2'); match (get_desc t1', get_desc t2') with | (Tvar _, _) | (_, Tvar _) -> () | (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) when compatible_labels ~in_pattern_mode:true l1 l2 -> mcomp type_pairs env t1 t2; mcomp type_pairs env u1 u2; | (Ttuple tl1, Ttuple tl2) -> mcomp_labeled_list type_pairs env tl1 tl2 | (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) -> mcomp_type_decl type_pairs env p1 p2 tl1 tl2 | (Tconstr (_, [], _), _) when has_injective_univars env t2' -> raise_unexplained_for Unify | (_, Tconstr (_, [], _)) when has_injective_univars env t1' -> raise_unexplained_for Unify | (Tconstr (p, _, _), _) | (_, Tconstr (p, _, _)) -> begin try let decl = Env.find_type p env in if non_aliasable p decl || is_datatype decl then raise Incompatible with Not_found -> () end (* | (Tpackage (p1, n1, tl1), Tpackage (p2, n2, tl2)) when n1 = n2 -> mcomp_list type_pairs env tl1 tl2 *) | (Tpackage _, Tpackage _) -> () | (Tvariant row1, Tvariant row2) -> mcomp_row type_pairs env row1 row2 | (Tobject (fi1, _), Tobject (fi2, _)) -> mcomp_fields type_pairs env fi1 fi2 | (Tfield _, Tfield _) -> (* Actually unused *) mcomp_fields type_pairs env t1' t2' | (Tnil, Tnil) -> () | (Tpoly (t1, []), Tpoly (t2, [])) -> mcomp type_pairs env t1 t2 | (Tpoly (t1, tl1), Tpoly (t2, tl2)) -> (try enter_poly env t1 tl1 t2 tl2 (mcomp type_pairs env) with Escape _ -> raise Incompatible) | (Tunivar _, Tunivar _) -> begin try unify_univar t1' t2' !univar_pairs with | Cannot_unify_universal_variables -> raise Incompatible | Out_of_scope_universal_variable -> () end | (_, _) -> raise Incompatible end and mcomp_list type_pairs env tl1 tl2 = if List.length tl1 <> List.length tl2 then raise Incompatible; List.iter2 (mcomp type_pairs env) tl1 tl2 and mcomp_labeled_list type_pairs env labeled_tl1 labeled_tl2 = if 0 <> List.compare_lengths labeled_tl1 labeled_tl2 then raise Incompatible; List.iter2 (fun (label1, ty1) (label2, ty2) -> if not (Option.equal String.equal label1 label2) then raise Incompatible; mcomp type_pairs env ty1 ty2) labeled_tl1 labeled_tl2 and mcomp_fields type_pairs env ty1 ty2 = if not (concrete_object ty1 && concrete_object ty2) then assert false; let (fields2, rest2) = flatten_fields ty2 in let (fields1, rest1) = flatten_fields ty1 in let (pairs, miss1, miss2) = associate_fields fields1 fields2 in let has_present = List.exists (fun (_, k, _) -> field_kind_repr k = Fpublic) in mcomp type_pairs env rest1 rest2; if has_present miss1 && get_desc (object_row ty2) = Tnil || has_present miss2 && get_desc (object_row ty1) = Tnil then raise Incompatible; List.iter (function (_n, k1, t1, k2, t2) -> mcomp_kind k1 k2; mcomp type_pairs env t1 t2) pairs and mcomp_kind k1 k2 = let k1 = field_kind_repr k1 in let k2 = field_kind_repr k2 in match k1, k2 with (Fpublic, Fabsent) | (Fabsent, Fpublic) -> raise Incompatible | _ -> () and mcomp_row type_pairs env row1 row2 = let r1, r2, pairs = merge_row_fields (row_fields row1) (row_fields row2) in let cannot_erase (_,f) = match row_field_repr f with Rpresent _ -> true | Rabsent | Reither _ -> false in if row_closed row1 && List.exists cannot_erase r2 || row_closed row2 && List.exists cannot_erase r1 then raise Incompatible; List.iter (fun (_,f1,f2) -> match row_field_repr f1, row_field_repr f2 with | Rpresent None, (Rpresent (Some _) | Reither (_, _::_, _) | Rabsent) | Rpresent (Some _), (Rpresent None | Reither (true, _, _) | Rabsent) | (Reither (_, _::_, _) | Rabsent), Rpresent None | (Reither (true, _, _) | Rabsent), Rpresent (Some _) -> raise Incompatible | Rpresent(Some t1), Rpresent(Some t2) -> mcomp type_pairs env t1 t2 | Rpresent(Some t1), Reither(false, tl2, _) -> List.iter (mcomp type_pairs env t1) tl2 | Reither(false, tl1, _), Rpresent(Some t2) -> List.iter (mcomp type_pairs env t2) tl1 | _ -> ()) pairs and mcomp_type_decl type_pairs env p1 p2 tl1 tl2 = try let decl = Env.find_type p1 env in let decl' = Env.find_type p2 env in if compatible_paths p1 p2 then begin let inj = try List.map Variance.(mem Inj) (Env.find_type p1 env).type_variance with Not_found -> List.map (fun _ -> false) tl1 in List.iter2 (fun i (t1,t2) -> if i then mcomp type_pairs env t1 t2) inj (List.combine tl1 tl2) end else if non_aliasable p1 decl && non_aliasable p2 decl' then raise Incompatible else match decl.type_kind, decl'.type_kind with | Type_record (lst,r), Type_record (lst',r') when r = r' -> mcomp_list type_pairs env tl1 tl2; mcomp_record_description type_pairs env lst lst' | Type_variant (v1,r), Type_variant (v2,r') when r = r' -> mcomp_list type_pairs env tl1 tl2; mcomp_variant_description type_pairs env v1 v2 | Type_open, Type_open -> mcomp_list type_pairs env tl1 tl2 | Type_abstract _, Type_abstract _ -> () | Type_abstract _, _ when not (non_aliasable p1 decl)-> () | _, Type_abstract _ when not (non_aliasable p2 decl') -> () | _ -> raise Incompatible with Not_found -> () and mcomp_type_option type_pairs env t t' = match t, t' with None, None -> () | Some t, Some t' -> mcomp type_pairs env t t' | _ -> raise Incompatible and mcomp_variant_description type_pairs env xs ys = let rec iter = fun x y -> match x, y with | c1 :: xs, c2 :: ys -> mcomp_type_option type_pairs env c1.cd_res c2.cd_res; begin match c1.cd_args, c2.cd_args with | Cstr_tuple l1, Cstr_tuple l2 -> mcomp_list type_pairs env l1 l2 | Cstr_record l1, Cstr_record l2 -> mcomp_record_description type_pairs env l1 l2 | _ -> raise Incompatible end; if Ident.name c1.cd_id = Ident.name c2.cd_id then iter xs ys else raise Incompatible | [],[] -> () | _ -> raise Incompatible in iter xs ys and mcomp_record_description type_pairs env = let rec iter x y = match x, y with | l1 :: xs, l2 :: ys -> mcomp type_pairs env l1.ld_type l2.ld_type; if Ident.name l1.ld_id = Ident.name l2.ld_id && l1.ld_mutable = l2.ld_mutable then iter xs ys else raise Incompatible | [], [] -> () | _ -> raise Incompatible in iter let mcomp env t1 t2 = mcomp (TypePairs.create 4) env t1 t2 let mcomp_for tr_exn env t1 t2 = try mcomp env t1 t2 with Incompatible -> raise_unexplained_for tr_exn (* Real unification *) let find_lowest_level ty = let lowest = ref generic_level in with_type_mark begin fun mark -> let rec find ty = if try_mark_node mark ty then begin let level = get_level ty in if level < !lowest then lowest := level; iter_type_expr find ty end in find ty end; !lowest (* This function can be called only in [Pattern] mode. *) let add_gadt_equation uenv source destination = (* Format.eprintf "@[add_gadt_equation %s %a@]@." (Path.name source) !Btype.print_raw destination; *) let env = get_env uenv in if has_free_univars env destination then occur_univar ~inj_only:true env destination else if local_non_recursive_abbrev uenv source destination then begin let destination = duplicate_type destination in let expansion_scope = Int.max (Path.scope source) (get_equations_scope uenv) in let type_origin = match Env.find_type source env with | decl -> type_origin decl | exception Not_found -> assert false in let decl = new_local_type ~manifest_and_scope:(destination, expansion_scope) type_origin in set_env uenv (Env.add_local_constraint source decl env); cleanup_abbrev () end let eq_package_path env p1 p2 = Path.same p1 p2 || Path.same (normalize_package_path env p1) (normalize_package_path env p2) let nondep_type' = ref (fun _ _ _ -> assert false) let package_subtype = ref (fun _ _ _ -> assert false) exception Nondep_cannot_erase of Ident.t let nondep_instance env level id ty = let ty = !nondep_type' env [id] ty in if level = generic_level then duplicate_type ty else with_level ~level (fun () -> instance ty) (* Find the type paths nl1 in the module type pack2, and add them to the list (nl2, tl2). raise Not_found if impossible *) let complete_type_list ?(allow_absent=false) env fl1 lv2 pack2 = (* This is morally WRONG: we're adding a (dummy) module without a scope in the environment. However no operation which cares about levels/scopes is going to happen while this module exists. The only operations that happen are: - Env.find_type_by_name - nondep_instance None of which check the scope. It'd be nice if we avoided creating such temporary dummy modules and broken environments though. *) let id2 = Ident.create_local "Pkg" in let env' = Env.add_module id2 Mp_present (Mty_ident pack2.pack_path) env in let rec complete fl1 fl2 = match fl1, fl2 with [], _ -> fl2 | (n, _) :: nl, (n2, _ as nt2) :: ntl' when n >= n2 -> nt2 :: complete (if n = n2 then nl else fl1) ntl' | (n, _) :: nl, _ -> let lid = "Pkg" :: n in let lid = Option.get (Longident.unflatten lid) in match Env.find_type_by_name lid env' with | (_, {type_arity = 0; type_kind = Type_abstract _; type_private = Public; type_manifest = Some t2}) -> begin match nondep_instance env' lv2 id2 t2 with | t -> (n, t) :: complete nl fl2 | exception Nondep_cannot_erase _ -> if allow_absent then complete nl fl2 else raise Exit end | (_, {type_arity = 0; type_kind = Type_abstract _; type_private = Public; type_manifest = None}) when allow_absent -> complete nl fl2 | _ -> raise Exit | exception Not_found when allow_absent-> complete nl fl2 in match complete fl1 pack2.pack_cstrs with | res -> res | exception Exit -> raise Not_found (* raise Not_found rather than Unify if the module types are incompatible *) let compare_package env unify_list lv1 pack1 lv2 pack2 = let ntl2 = complete_type_list env pack1.pack_cstrs lv2 pack2 and ntl1 = complete_type_list env pack2.pack_cstrs lv1 pack1 in unify_list (List.map snd ntl1) (List.map snd ntl2); if eq_package_path env pack1.pack_path pack2.pack_path then Ok () else Result.bind (!package_subtype env pack1 pack2) (fun () -> !package_subtype env pack2 pack1) (* force unification in Reither when one side has a non-conjunctive type *) (* Code smell: this could also be put in unification_environment. Only modified by expand_head_rigid, but the corresponding unification environment is built in subst. *) let rigid_variants = ref false let unify1_var uenv t1 t2 = assert (is_Tvar t1); occur_for Unify uenv t1 t2; let env = get_env uenv in match occur_univar_for Unify env t2 with | () -> begin try update_level env (get_level t1) t2; update_scope (get_scope t1) t2; with Escape e -> raise_for Unify (Escape e) end; link_type t1 t2; true | exception Unify_trace _ when in_pattern_mode uenv -> false (* Called from unify3 *) let unify3_var uenv t1' t2 t2' = occur_for Unify uenv t1' t2; match occur_univar_for Unify (get_env uenv) t2 with | () -> link_type t1' t2 | exception Unify_trace _ when in_pattern_mode uenv -> reify uenv t1'; reify uenv t2'; occur_univar ~inj_only:true (get_env uenv) t2'; record_equation uenv t1' t2' (* 1. When unifying two non-abbreviated types, one type is made a link to the other. When unifying an abbreviated type with a non-abbreviated type, the non-abbreviated type is made a link to the other one. When unifying to abbreviated types, these two types are kept distincts, but they are made to (temporally) expand to the same type. 2. Abbreviations with at least one parameter are systematically expanded. The overhead does not seem too high, and that way abbreviations where some parameters does not appear in the expansion, such as ['a t = int], are correctly handled. In particular, for this example, unifying ['a t] with ['b t] keeps ['a] and ['b] distincts. (Is it really important ?) 3. Unifying an abbreviation ['a t = 'a] with ['a] should not yield ['a t as 'a]. Indeed, the type variable would otherwise be lost. This problem occurs for abbreviations expanding to a type variable, but also to many other constrained abbreviations (for instance, [(< x : 'a > -> unit) t = ]). The solution is that, if an abbreviation is unified with some subpart of its parameters, then the parameter actually does not get abbreviated. It would be possible to check whether some information is indeed lost, but it probably does not worth it. *) let rec unify uenv t1 t2 = (* First step: special cases (optimizations) *) if unify_eq uenv t1 t2 then () else let reset_tracing = check_trace_gadt_instances (get_env uenv) in try type_changed := true; begin match (get_desc t1, get_desc t2) with (Tvar _, Tconstr _) when deep_occur t1 t2 -> unify2 uenv t1 t2 | (Tconstr _, Tvar _) when deep_occur t2 t1 -> unify2 uenv t1 t2 | (Tvar _, _) -> if unify1_var uenv t1 t2 then () else unify2 uenv t1 t2 | (_, Tvar _) -> if unify1_var uenv t2 t1 then () else unify2 uenv t1 t2 | (Tunivar _, Tunivar _) -> unify_univar_for Unify t1 t2 !univar_pairs; update_level_for Unify (get_env uenv) (get_level t1) t2; update_scope_for Unify (get_scope t1) t2; link_type t1 t2 | (Tconstr (p1, [], a1), Tconstr (p2, [], a2)) when Path.same p1 p2 (* This optimization assumes that t1 does not expand to t2 (and conversely), so we fall back to the general case when any of the types has a cached expansion. *) && not (has_cached_expansion p1 !a1 || has_cached_expansion p2 !a2) -> update_level_for Unify (get_env uenv) (get_level t1) t2; update_scope_for Unify (get_scope t1) t2; link_type t1 t2 | (Tconstr _, Tconstr _) when Env.has_local_constraints (get_env uenv) -> unify2_rec uenv t1 t1 t2 t2 | _ -> unify2 uenv t1 t2 end; reset_trace_gadt_instances reset_tracing; with Unify_trace trace -> reset_trace_gadt_instances reset_tracing; raise_trace_for Unify (Diff {got = t1; expected = t2} :: trace) and unify2 uenv t1 t2 = unify2_expand uenv t1 t1 t2 t2 and unify2_rec uenv t10 t1 t20 t2 = if unify_eq uenv t1 t2 then () else try match (get_desc t1, get_desc t2) with | (Tconstr (p1, tl1, a1), Tconstr (p2, tl2, a2)) -> if Path.same p1 p2 && tl1 = [] && tl2 = [] && not (has_cached_expansion p1 !a1 || has_cached_expansion p2 !a2) then begin update_level_for Unify (get_env uenv) (get_level t1) t2; update_scope_for Unify (get_scope t1) t2; link_type t1 t2 end else let env = get_env uenv in if find_expansion_scope env p1 > find_expansion_scope env p2 then unify2_rec uenv t10 t1 t20 (try_expand_safe env t2) else unify2_rec uenv t10 (try_expand_safe env t1) t20 t2 | _ -> raise Cannot_expand with Cannot_expand -> unify2_expand uenv t10 t1 t20 t2 and unify2_expand uenv t1 t1' t2 t2' = (* Second step: expansion of abbreviations *) (* Expansion may change the representative of the types. *) let env = get_env uenv in ignore (expand_head_unif env t1'); ignore (expand_head_unif env t2'); let t1' = expand_head_unif env t1' in let t2' = expand_head_unif env t2' in let lv = Int.min (get_level t1') (get_level t2') in let scope = Int.max (get_scope t1') (get_scope t2') in update_level_for Unify env lv t2; update_level_for Unify env lv t1; update_scope_for Unify scope t2; update_scope_for Unify scope t1; if unify_eq uenv t1' t2' then () else let t1, t2 = if !Clflags.principal && (find_lowest_level t1' < lv || find_lowest_level t2' < lv) then (* Expand abbreviations hiding a lower level *) (* Should also do it for parameterized types, after unification... *) (match get_desc t1 with Tconstr (_, [], _) -> t1' | _ -> t1), (match get_desc t2 with Tconstr (_, [], _) -> t2' | _ -> t2) else (t1, t2) in if unify_eq uenv t1 t1' || not (unify_eq uenv t2 t2') then unify3 uenv t1 t1' t2 t2' else try unify3 uenv t2 t2' t1 t1' with Unify_trace trace -> raise_trace_for Unify (swap_trace trace) and unify3 uenv t1 t1' t2 t2' = (* Third step: truly unification *) (* Assumes either [t1 == t1'] or [t2 != t2'] *) let tt1' = Transient_expr.repr t1' in let d1 = tt1'.desc and d2 = get_desc t2' in let create_recursion = (not (eq_type t2 t2')) && (deep_occur t1' t2) in begin match (d1, d2) with (* handle vars and univars specially *) (Tunivar _, Tunivar _) -> unify_univar_for Unify t1' t2' !univar_pairs; link_type t1' t2' | (Tvar _, _) -> unify3_var uenv t1' t2 t2' | (_, Tvar _) -> unify3_var uenv t2' t1 t1' | (Tfield _, Tfield _) -> (* special case for GADTs *) unify_fields uenv t1' t2' | _ -> if in_pattern_mode uenv then add_type_equality uenv t1' t2' else begin occur_for Unify uenv t1' t2; link_type t1' t2 end; try begin match (d1, d2) with (Tarrow (l1, t1, u1, c1), Tarrow (l2, t2, u2, c2)) -> eq_labels Unify ~in_pattern_mode:(in_pattern_mode uenv) l1 l2; unify uenv t1 t2; unify uenv u1 u2; begin match is_commu_ok c1, is_commu_ok c2 with | false, true -> set_commu_ok c1 | true, false -> set_commu_ok c2 | false, false -> link_commu ~inside:c1 c2 | true, true -> () end | (Ttuple labeled_tl1, Ttuple labeled_tl2) -> unify_labeled_list uenv labeled_tl1 labeled_tl2 | (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) when Path.same p1 p2 -> if not (in_pattern_mode uenv) then unify_list uenv tl1 tl2 else if can_assume_injective uenv then without_assume_injective uenv (fun uenv -> unify_list uenv tl1 tl2) else if in_current_module p1 (* || in_pervasives p1 *) || List.exists (expands_to_datatype (get_env uenv)) [t1'; t1; t2] then unify_list uenv tl1 tl2 else let inj = try List.map Variance.(mem Inj) (Env.find_type p1 (get_env uenv)).type_variance with Not_found -> List.map (fun _ -> false) tl1 in List.iter2 (fun i (t1, t2) -> if i then unify uenv t1 t2 else begin reify uenv t1; reify uenv t2 end) inj (List.combine tl1 tl2) | (Tconstr (path,[],_), Tconstr (path',[],_)) when in_pattern_mode uenv && let env = get_env uenv in is_instantiable env path && is_instantiable env path' -> let source, destination = if Path.scope path > Path.scope path' then path , t2' else path', t1' in record_equation uenv t1' t2'; add_gadt_equation uenv source destination | (Tconstr (path,[],_), _) when in_pattern_mode uenv && is_instantiable (get_env uenv) path -> reify uenv t2'; record_equation uenv t1' t2'; add_gadt_equation uenv path t2' | (_, Tconstr (path,[],_)) when in_pattern_mode uenv && is_instantiable (get_env uenv) path -> reify uenv t1'; record_equation uenv t1' t2'; add_gadt_equation uenv path t1' | (Tconstr (_,_,_), _) | (_, Tconstr (_,_,_)) when in_pattern_mode uenv -> reify uenv t1'; reify uenv t2'; mcomp_for Unify (get_env uenv) t1' t2'; record_equation uenv t1' t2' | (Tobject (fi1, nm1), Tobject (fi2, _)) -> unify_fields uenv fi1 fi2; (* Type [t2'] may have been instantiated by [unify_fields] *) (* XXX One should do some kind of unification... *) begin match get_desc t2' with Tobject (_, {contents = Some (_, va::_)}) when (match get_desc va with Tvar _|Tunivar _|Tnil -> true | _ -> false) -> () | Tobject (_, nm2) -> set_name nm2 !nm1 | _ -> () end | (Tvariant row1, Tvariant row2) -> if not (in_pattern_mode uenv) then unify_row uenv row1 row2 else begin let snap = snapshot () in try unify_row uenv row1 row2 with Unify_trace _ -> backtrack snap; reify uenv t1'; reify uenv t2'; mcomp_for Unify (get_env uenv) t1' t2'; record_equation uenv t1' t2' end | (Tfield(f,kind,_,rem), Tnil) | (Tnil, Tfield(f,kind,_,rem)) -> begin match field_kind_repr kind with Fprivate when f <> dummy_method -> link_kind ~inside:kind field_absent; if d2 = Tnil then unify uenv rem t2' else unify uenv (newgenty Tnil) rem | _ -> if f = dummy_method then raise_for Unify (Obj Self_cannot_be_closed) else if d1 = Tnil then raise_for Unify (Obj (Missing_field(First, f))) else raise_for Unify (Obj (Missing_field(Second, f))) end | (Tnil, Tnil) -> () | (Tpoly (t1, []), Tpoly (t2, [])) -> unify uenv t1 t2 | (Tpoly (t1, tl1), Tpoly (t2, tl2)) -> enter_poly_for Unify (get_env uenv) t1 tl1 t2 tl2 (unify uenv) | (Tpackage pack1, Tpackage pack2) -> unify_package uenv (get_level t1) pack1 (get_level t2) pack2 | (Tnil, Tconstr _ ) -> raise_for Unify (Obj (Abstract_row Second)) | (Tconstr _, Tnil ) -> raise_for Unify (Obj (Abstract_row First)) | (_, _) -> raise_unexplained_for Unify end; (* XXX Commentaires + changer "create_recursion" ||| Comments + change "create_recursion" *) if create_recursion then match get_desc t2 with Tconstr (p, tl, abbrev) -> forget_abbrev abbrev p; let t2'' = expand_head_unif (get_env uenv) t2 in if not (closed_parameterized_type tl t2'') then link_type t2 t2' | _ -> () (* t2 has already been expanded by update_level *) with Unify_trace trace -> Transient_expr.set_desc tt1' d1; raise_trace_for Unify trace end and unify_list env tl1 tl2 = if List.length tl1 <> List.length tl2 then raise_unexplained_for Unify; List.iter2 (unify env) tl1 tl2 and unify_labeled_list env labeled_tl1 labeled_tl2 = if 0 <> List.compare_lengths labeled_tl1 labeled_tl2 then raise_unexplained_for Unify; List.iter2 (fun (label1, ty1) (label2, ty2) -> if not (Option.equal String.equal label1 label2) then raise_unexplained_for Unify; unify env ty1 ty2) labeled_tl1 labeled_tl2 and unify_package uenv lvl1 pack1 lvl2 pack2 = match compare_package (get_env uenv) (unify_list uenv) lvl1 pack1 lvl2 pack2 with | Ok () -> () | Error fm_err -> if not (in_pattern_mode uenv) then raise_for Unify (Errortrace.First_class_module fm_err); List.iter (fun (_n, ty) -> reify uenv ty) (pack1.pack_cstrs @ pack2.pack_cstrs); | exception Not_found -> if not (in_pattern_mode uenv) then raise_unexplained_for Unify; List.iter (fun (_n, ty) -> reify uenv ty) (pack1.pack_cstrs @ pack2.pack_cstrs); (* if !generate_equations then List.iter2 (mcomp !env) tl1 tl2 *) (* Build a fresh row variable for unification *) and make_rowvar level use1 rest1 use2 rest2 = let set_name ty name = match get_desc ty with Tvar None -> set_type_desc ty (Tvar name) | _ -> () in let name = match get_desc rest1, get_desc rest2 with Tvar (Some _ as name1), Tvar (Some _ as name2) -> if get_level rest1 <= get_level rest2 then name1 else name2 | Tvar (Some _ as name), _ -> if use2 then set_name rest2 name; name | _, Tvar (Some _ as name) -> if use1 then set_name rest2 name; name | _ -> None in if use1 then rest1 else if use2 then rest2 else newty2 ~level (Tvar name) and unify_fields uenv ty1 ty2 = (* Optimization *) let (fields1, rest1) = flatten_fields ty1 and (fields2, rest2) = flatten_fields ty2 in let (pairs, miss1, miss2) = associate_fields fields1 fields2 in let l1 = get_level ty1 and l2 = get_level ty2 in let va = make_rowvar (Int.min l1 l2) (miss2=[]) rest1 (miss1=[]) rest2 in let tr1 = Transient_expr.repr rest1 and tr2 = Transient_expr.repr rest2 in let d1 = tr1.desc and d2 = tr2.desc in try unify uenv (build_fields l1 miss1 va) rest2; unify uenv rest1 (build_fields l2 miss2 va); List.iter (fun (name, k1, t1, k2, t2) -> unify_kind k1 k2; try if !trace_gadt_instances && not (in_subst_mode uenv) then begin (* in_subst_mode: see PR#11771 *) update_level_for Unify (get_env uenv) (get_level va) t1; update_scope_for Unify (get_scope va) t1 end; unify uenv t1 t2 with Unify_trace trace -> raise_trace_for Unify (incompatible_fields ~name ~got:t1 ~expected:t2 :: trace) ) pairs with exn -> Transient_expr.set_desc tr1 d1; Transient_expr.set_desc tr2 d2; raise exn and unify_kind k1 k2 = match field_kind_repr k1, field_kind_repr k2 with (Fprivate, (Fprivate | Fpublic)) -> link_kind ~inside:k1 k2 | (Fpublic, Fprivate) -> link_kind ~inside:k2 k1 | (Fpublic, Fpublic) -> () | _ -> assert false and unify_row uenv row1 row2 = let Row {fields = row1_fields; more = rm1; closed = row1_closed; name = row1_name} = row_repr row1 in let Row {fields = row2_fields; more = rm2; closed = row2_closed; name = row2_name} = row_repr row2 in if unify_eq uenv rm1 rm2 then () else let r1, r2, pairs = merge_row_fields row1_fields row2_fields in if r1 <> [] && r2 <> [] then begin let ht = Hashtbl.create (List.length r1) in List.iter (fun (l,_) -> Hashtbl.add ht (hash_variant l) l) r1; List.iter (fun (l,_) -> try raise (Tags(l, Hashtbl.find ht (hash_variant l))) with Not_found -> ()) r2 end; let fixed1 = fixed_explanation row1 and fixed2 = fixed_explanation row2 in let more = match fixed1, fixed2 with | Some _, Some _ -> if get_level rm2 < get_level rm1 then rm2 else rm1 | Some _, None -> rm1 | None, Some _ -> rm2 | None, None -> newty2 ~level:(Int.min (get_level rm1) (get_level rm2)) (Tvar None) in let fixed = merge_fixed_explanation fixed1 fixed2 and closed = row1_closed || row2_closed in let keep switch = List.for_all (fun (_,f1,f2) -> let f1, f2 = switch f1 f2 in row_field_repr f1 = Rabsent || row_field_repr f2 <> Rabsent) pairs in let empty fields = List.for_all (fun (_,f) -> row_field_repr f = Rabsent) fields in (* Check whether we are going to build an empty type *) if closed && (empty r1 || row2_closed) && (empty r2 || row1_closed) && List.for_all (fun (_,f1,f2) -> row_field_repr f1 = Rabsent || row_field_repr f2 = Rabsent) pairs then raise_for Unify (Variant No_intersection); let name = if row1_name <> None && (row1_closed || empty r2) && (not row2_closed || keep (fun f1 f2 -> f1, f2) && empty r1) then row1_name else if row2_name <> None && (row2_closed || empty r1) && (not row1_closed || keep (fun f1 f2 -> f2, f1) && empty r2) then row2_name else None in let set_more pos row rest = let rest = if closed then filter_row_fields (row_closed row) rest else rest in begin match fixed_explanation row with | None -> if rest <> [] && row_closed row then raise_for Unify (Variant (No_tags(pos,rest))) | Some fixed -> if closed && not (row_closed row) then raise_for Unify (Variant (Fixed_row(pos,Cannot_be_closed,fixed))) else if rest <> [] then let case = Cannot_add_tags (List.map fst rest) in raise_for Unify (Variant (Fixed_row(pos,case,fixed))) end; (* The following test is not principal... should rather use Tnil *) let rm = row_more row in (*if !trace_gadt_instances && rm.desc = Tnil then () else*) if !trace_gadt_instances && not (in_subst_mode uenv) then (* in_subst_mode: see PR#11771 *) update_level_for Unify (get_env uenv) (get_level rm) (newgenty (Tvariant row)); if has_fixed_explanation row then if eq_type more rm then () else if is_Tvar rm then link_type rm more else unify uenv rm more else let ty = newgenty (Tvariant (create_row ~fields:rest ~more ~closed ~fixed ~name)) in update_level_for Unify (get_env uenv) (get_level rm) ty; update_scope_for Unify (get_scope rm) ty; link_type rm ty in let tm1 = Transient_expr.repr rm1 and tm2 = Transient_expr.repr rm2 in let md1 = tm1.desc and md2 = tm2.desc in begin try set_more Second row2 r1; set_more First row1 r2; List.iter (fun (l,f1,f2) -> try unify_row_field uenv fixed1 fixed2 rm1 rm2 l f1 f2 with Unify_trace trace -> raise_trace_for Unify (Variant (Incompatible_types_for l) :: trace) ) pairs; if static_row row1 then begin let rm = row_more row1 in if is_Tvar rm then link_type rm (newty2 ~level:(get_level rm) Tnil) end with exn -> Transient_expr.set_desc tm1 md1; Transient_expr.set_desc tm2 md2; raise exn end and unify_row_field uenv fixed1 fixed2 rm1 rm2 l f1 f2 = let if_not_fixed (pos,fixed) f = match fixed with | None -> f () | Some fix -> let tr = [Variant(Fixed_row(pos,Cannot_add_tags [l],fix))] in raise_trace_for Unify tr in let first = First, fixed1 and second = Second, fixed2 in let either_fixed = match fixed1, fixed2 with | None, None -> false | _ -> true in if f1 == f2 then () else match row_field_repr f1, row_field_repr f2 with Rpresent(Some t1), Rpresent(Some t2) -> unify uenv t1 t2 | Rpresent None, Rpresent None -> () | Reither(c1, tl1, m1), Reither(c2, tl2, m2) -> if eq_row_field_ext f1 f2 then () else let no_arg = c1 || c2 and matched = m1 || m2 in if either_fixed && not no_arg && List.length tl1 = List.length tl2 then begin (* PR#7496 *) let f = rf_either [] ~no_arg ~matched in link_row_field_ext ~inside:f1 f; link_row_field_ext ~inside:f2 f; List.iter2 (unify uenv) tl1 tl2 end else let redo = (m1 || m2 || either_fixed || !rigid_variants && (List.length tl1 = 1 || List.length tl2 = 1)) && begin match tl1 @ tl2 with [] -> false | t1 :: tl -> if no_arg then raise_unexplained_for Unify; Types.changed_row_field_exts [f1;f2] (fun () -> List.iter (unify uenv t1) tl ) end in if redo then unify_row_field uenv fixed1 fixed2 rm1 rm2 l f1 f2 else let remq tl = List.filter (fun ty -> not (List.exists (eq_type ty) tl)) in let tl1' = remq tl2 tl1 and tl2' = remq tl1 tl2 in (* PR#6744 *) let env = get_env uenv in let (tlu1,tl1') = List.partition (has_free_univars env) tl1' and (tlu2,tl2') = List.partition (has_free_univars env) tl2' in begin match tlu1, tlu2 with [], [] -> () | (tu1::tlu1), _ :: _ -> (* Attempt to merge all the types containing univars *) List.iter (unify uenv tu1) (tlu1@tlu2) | (tu::_, []) | ([], tu::_) -> occur_univar_for Unify env tu end; (* Is this handling of levels really principal? *) let update_levels rm = let env = get_env uenv in List.iter (fun ty -> update_level_for Unify env (get_level rm) ty; update_scope_for Unify (get_scope rm) ty) in update_levels rm2 tl1'; update_levels rm1 tl2'; let f1' = rf_either tl2' ~no_arg ~matched in let f2' = rf_either tl1' ~use_ext_of:f1' ~no_arg ~matched in link_row_field_ext ~inside:f1 f1'; link_row_field_ext ~inside:f2 f2'; | Reither(_, _, false), Rabsent -> if_not_fixed first (fun () -> link_row_field_ext ~inside:f1 f2) | Rabsent, Reither(_, _, false) -> if_not_fixed second (fun () -> link_row_field_ext ~inside:f2 f1) | Rabsent, Rabsent -> () | Reither(false, tl, _), Rpresent(Some t2) -> if_not_fixed first (fun () -> let s = snapshot () in link_row_field_ext ~inside:f1 f2; update_level_for Unify (get_env uenv) (get_level rm1) t2; update_scope_for Unify (get_scope rm1) t2; (try List.iter (fun t1 -> unify uenv t1 t2) tl with exn -> undo_first_change_after s; raise exn) ) | Rpresent(Some t1), Reither(false, tl, _) -> if_not_fixed second (fun () -> let s = snapshot () in link_row_field_ext ~inside:f2 f1; update_level_for Unify (get_env uenv) (get_level rm2) t1; update_scope_for Unify (get_scope rm2) t1; (try List.iter (unify uenv t1) tl with exn -> undo_first_change_after s; raise exn) ) | Reither(true, [], _), Rpresent None -> if_not_fixed first (fun () -> link_row_field_ext ~inside:f1 f2) | Rpresent None, Reither(true, [], _) -> if_not_fixed second (fun () -> link_row_field_ext ~inside:f2 f1) | Rabsent, (Rpresent _ | Reither(_,_,true)) -> raise_trace_for Unify [Variant(No_tags(First, [l,f1]))] | (Rpresent _ | Reither (_,_,true)), Rabsent -> raise_trace_for Unify [Variant(No_tags(Second, [l,f2]))] | (Rpresent (Some _) | Reither(false,_,_)), (Rpresent None | Reither(true,_,_)) | (Rpresent None | Reither(true,_,_)), (Rpresent (Some _) | Reither(false,_,_)) -> (* constructor arity mismatch: 0 <> 1 *) raise_unexplained_for Unify | Reither(true, _ :: _, _ ), Rpresent _ | Rpresent _ , Reither(true, _ :: _, _ ) -> (* inconsistent conjunction on a non-absent field *) raise_unexplained_for Unify let unify uenv ty1 ty2 = let snap = Btype.snapshot () in try unify uenv ty1 ty2 with Unify_trace trace -> undo_compress snap; raise (Unify (expand_to_unification_error (get_env uenv) trace)) let unify_gadt (penv : Pattern_env.t) ~pat:ty1 ~expected:ty2 = let equated_types = TypePairs.create 0 in let do_unify_gadt () = let uenv = Pattern { penv; equated_types; assume_injective = true; unify_eq_set = TypePairs.create 11; } in unify uenv ty1 ty2; equated_types in let no_leak = penv.in_counterexample || closed_type_expr ty2 in if no_leak then with_univar_pairs [] do_unify_gadt else let snap = Btype.snapshot () in try (* If there are free variables, first try normal unification *) let uenv = Expression {env = penv.env; in_subst = false} in with_univar_pairs [] (fun () -> unify uenv ty1 ty2); equated_types with Unify _ -> (* If it fails, retry in pattern mode *) Btype.backtrack snap; with_univar_pairs [] do_unify_gadt let unify_var uenv t1 t2 = if eq_type t1 t2 then () else match get_desc t1, get_desc t2 with Tvar _, Tconstr _ when deep_occur t1 t2 -> unify uenv t1 t2 | Tvar _, _ -> let env = get_env uenv in let reset_tracing = check_trace_gadt_instances env in begin try occur_for Unify uenv t1 t2; update_level_for Unify env (get_level t1) t2; update_scope_for Unify (get_scope t1) t2; link_type t1 t2; reset_trace_gadt_instances reset_tracing; with Unify_trace trace -> reset_trace_gadt_instances reset_tracing; raise (Unify (expand_to_unification_error env (Diff { got = t1; expected = t2 } :: trace))) end | _ -> unify uenv t1 t2 let _ = unify_var' := unify_var (* the final versions of unification functions *) let unify_var env ty1 ty2 = unify_var (Expression {env; in_subst = false}) ty1 ty2 let unify_pairs env ty1 ty2 pairs = with_univar_pairs pairs (fun () -> unify (Expression {env; in_subst = false}) ty1 ty2) let unify env ty1 ty2 = unify_pairs env ty1 ty2 [] (* Lower the level of a type to the current level *) let enforce_current_level env ty = unify_var env (newvar ()) ty (**** Special cases of unification ****) let expand_head_trace env t = let reset_tracing = check_trace_gadt_instances env in let t = expand_head_unif env t in reset_trace_gadt_instances reset_tracing; t (* Unify [t] and [l:'a -> 'b]. Return ['a] and ['b]. In [-nolabels] mode, label mismatch is accepted when (1) the requested label is "" (2) the original label is not optional *) type filter_arrow_failure = | Unification_error of unification_error | Label_mismatch of { got : arg_label ; expected : arg_label ; expected_type : type_expr } | Not_a_function exception Filter_arrow_failed of filter_arrow_failure let filter_arrow env t l = let function_type level = let t1 = newvar2 level and t2 = newvar2 level in let t' = newty2 ~level (Tarrow (l, t1, t2, commu_ok)) in t', t1, t2 in let t = try expand_head_trace env t with Unify_trace trace -> let t', _, _ = function_type (get_level t) in raise (Filter_arrow_failed (Unification_error (expand_to_unification_error env (Diff { got = t'; expected = t } :: trace)))) in match get_desc t with | Tvar _ -> let t', t1, t2 = function_type (get_level t) in link_type t t'; (t1, t2) | Tarrow(l', t1, t2, _) -> if l = l' || !Clflags.classic && l = Nolabel && not (is_optional l') then (t1, t2) else raise (Filter_arrow_failed (Label_mismatch { got = l; expected = l'; expected_type = t })) | _ -> raise (Filter_arrow_failed Not_a_function) type filter_method_failure = | Unification_error of unification_error | Not_a_method | Not_an_object of type_expr exception Filter_method_failed of filter_method_failure (* Used by [filter_method]. *) let rec filter_method_field env name ty = let method_type ~level = let ty1 = newvar2 level and ty2 = newvar2 level in let ty' = newty2 ~level (Tfield (name, field_public, ty1, ty2)) in ty', ty1 in let ty = try expand_head_trace env ty with Unify_trace trace -> let level = get_level ty in let ty', _ = method_type ~level in raise (Filter_method_failed (Unification_error (expand_to_unification_error env (Diff { got = ty; expected = ty' } :: trace)))) in match get_desc ty with | Tvar _ -> let level = get_level ty in let ty', ty1 = method_type ~level in link_type ty ty'; ty1 | Tfield(n, kind, ty1, ty2) -> if n = name then begin unify_kind kind field_public; ty1 end else filter_method_field env name ty2 | _ -> raise (Filter_method_failed Not_a_method) (* Unify [ty] and [< name : 'a; .. >]. Return ['a]. *) let filter_method env name ty = let object_type ~level ~scope = let ty1 = newvar2 level in let ty' = newty3 ~level ~scope (Tobject (ty1, ref None)) in let ty_meth = filter_method_field env name ty1 in (ty', ty_meth) in let ty = try expand_head_trace env ty with Unify_trace trace -> let level = get_level ty in let scope = get_scope ty in let ty', _ = object_type ~level ~scope in raise (Filter_method_failed (Unification_error (expand_to_unification_error env (Diff { got = ty; expected = ty' } :: trace)))) in match get_desc ty with | Tvar _ -> let level = get_level ty in let scope = get_scope ty in let ty', ty_meth = object_type ~level ~scope in link_type ty ty'; ty_meth | Tobject(f, _) -> filter_method_field env name f | _ -> raise (Filter_method_failed (Not_an_object ty)) exception Filter_method_row_failed let rec filter_method_row env name priv ty = let ty = expand_head env ty in match get_desc ty with | Tvar _ -> let level = get_level ty in let field = newvar2 level in let row = newvar2 level in let kind, priv = match priv with | Private -> let kind = field_private () in kind, Mprivate kind | Public -> field_public, Mpublic in let ty' = newty2 ~level (Tfield (name, kind, field, row)) in link_type ty ty'; priv, field, row | Tfield(n, kind, ty1, ty2) -> if n = name then begin let priv = match priv with | Public -> unify_kind kind field_public; Mpublic | Private -> Mprivate kind in priv, ty1, ty2 end else begin let level = get_level ty in let priv, field, row = filter_method_row env name priv ty2 in let row = newty2 ~level (Tfield (n, kind, ty1, row)) in priv, field, row end | Tnil -> if name = Btype.dummy_method then raise Filter_method_row_failed else begin match priv with | Public -> raise Filter_method_row_failed | Private -> let level = get_level ty in let kind = field_absent in Mprivate kind, newvar2 level, ty end | _ -> raise Filter_method_row_failed (* Operations on class signatures *) let new_class_signature () = let row = newvar () in let self = newobj row in { csig_self = self; csig_self_row = row; csig_vars = Vars.empty; csig_meths = Meths.empty; } let add_dummy_method env ~scope sign = let _, ty, row = filter_method_row env dummy_method Private sign.csig_self_row in unify env ty (new_scoped_ty scope (Ttuple [])); sign.csig_self_row <- row type add_method_failure = | Unexpected_method | Type_mismatch of Errortrace.unification_error exception Add_method_failed of add_method_failure let add_method env label priv virt ty sign = let meths = sign.csig_meths in let priv, virt = match Meths.find label meths with | (priv', virt', ty') -> begin let priv = match priv' with | Mpublic -> Mpublic | Mprivate k -> match priv with | Public -> begin match field_kind_repr k with | Fpublic -> () | Fprivate -> link_kind ~inside:k field_public | Fabsent -> assert false end; Mpublic | Private -> priv' in let virt = match virt' with | Concrete -> Concrete | Virtual -> virt in match unify env ty ty' with | () -> priv, virt | exception Unify trace -> raise (Add_method_failed (Type_mismatch trace)) end | exception Not_found -> begin let priv, ty', row = match filter_method_row env label priv sign.csig_self_row with | priv, ty', row -> priv, ty', row | exception Filter_method_row_failed -> raise (Add_method_failed Unexpected_method) in match unify env ty ty' with | () -> sign.csig_self_row <- row; priv, virt | exception Unify trace -> raise (Add_method_failed (Type_mismatch trace)) end in let meths = Meths.add label (priv, virt, ty) meths in sign.csig_meths <- meths type add_instance_variable_failure = | Mutability_mismatch of mutable_flag | Type_mismatch of Errortrace.unification_error exception Add_instance_variable_failed of add_instance_variable_failure let check_mutability mut mut' = match mut, mut' with | Mutable, Mutable -> () | Immutable, Immutable -> () | Mutable, Immutable | Immutable, Mutable -> raise (Add_instance_variable_failed (Mutability_mismatch mut)) let add_instance_variable ~strict env label mut virt ty sign = let vars = sign.csig_vars in let virt = match Vars.find label vars with | (mut', virt', ty') -> let virt = match virt' with | Concrete -> Concrete | Virtual -> virt in if strict then begin check_mutability mut mut'; match unify env ty ty' with | () -> () | exception Unify trace -> raise (Add_instance_variable_failed (Type_mismatch trace)) end; virt | exception Not_found -> virt in let vars = Vars.add label (mut, virt, ty) vars in sign.csig_vars <- vars type inherit_class_signature_failure = | Self_type_mismatch of Errortrace.unification_error | Method of label * add_method_failure | Instance_variable of label * add_instance_variable_failure exception Inherit_class_signature_failed of inherit_class_signature_failure let unify_self_types env sign1 sign2 = let self_type1 = sign1.csig_self in let self_type2 = sign2.csig_self in match unify env self_type1 self_type2 with | () -> () | exception Unify err -> begin match err.trace with | Errortrace.Diff _ :: Errortrace.Incompatible_fields {name; _} :: rem -> let err = Errortrace.unification_error ~trace:rem in let failure = Method (name, Type_mismatch err) in raise (Inherit_class_signature_failed failure) | _ -> raise (Inherit_class_signature_failed (Self_type_mismatch err)) end (* Unify components of sign2 into sign1 *) let inherit_class_signature ~strict env sign1 sign2 = unify_self_types env sign1 sign2; Meths.iter (fun label (priv, virt, ty) -> let priv = match priv with | Mpublic -> Public | Mprivate kind -> assert (field_kind_repr kind = Fabsent); Private in match add_method env label priv virt ty sign1 with | () -> () | exception Add_method_failed failure -> let failure = Method(label, failure) in raise (Inherit_class_signature_failed failure)) sign2.csig_meths; Vars.iter (fun label (mut, virt, ty) -> match add_instance_variable ~strict env label mut virt ty sign1 with | () -> () | exception Add_instance_variable_failed failure -> let failure = Instance_variable(label, failure) in raise (Inherit_class_signature_failed failure)) sign2.csig_vars let update_class_signature env sign = let self = expand_head env sign.Types.csig_self in let fields, row = flatten_fields (object_fields self) in let meths, implicitly_public, implicitly_declared = List.fold_left (fun (meths, implicitly_public, implicitly_declared) (lab, k, ty) -> if lab = dummy_method then meths, implicitly_public, implicitly_declared else begin match Meths.find lab meths with | priv, virt, ty' -> let meths, implicitly_public = match priv, field_kind_repr k with | Mpublic, _ -> meths, implicitly_public | Mprivate _, Fpublic -> let meths = Meths.add lab (Mpublic, virt, ty') meths in let implicitly_public = lab :: implicitly_public in meths, implicitly_public | Mprivate _, _ -> meths, implicitly_public in meths, implicitly_public, implicitly_declared | exception Not_found -> let meths, implicitly_declared = match field_kind_repr k with | Fpublic -> let meths = Meths.add lab (Mpublic, Virtual, ty) meths in let implicitly_declared = lab :: implicitly_declared in meths, implicitly_declared | Fprivate -> let meths = Meths.add lab (Mprivate k, Virtual, ty) meths in let implicitly_declared = lab :: implicitly_declared in meths, implicitly_declared | Fabsent -> meths, implicitly_declared in meths, implicitly_public, implicitly_declared end) (sign.csig_meths, [], []) fields in sign.csig_meths <- meths; sign.csig_self_row <- row; implicitly_public, implicitly_declared let hide_private_methods env sign = let self = expand_head env sign.Types.csig_self in let fields, _ = flatten_fields (object_fields self) in List.iter (fun (_, k, _) -> match field_kind_repr k with | Fprivate -> link_kind ~inside:k field_absent | _ -> ()) fields let close_class_signature env sign = let rec close env ty = let ty = expand_head env ty in match get_desc ty with | Tvar _ -> let level = get_level ty in link_type ty (newty2 ~level Tnil); true | Tfield(lab, _, _, _) when lab = dummy_method -> false | Tfield(_, _, _, ty') -> close env ty' | Tnil -> true | _ -> assert false in let self = expand_head env sign.csig_self in close env (object_fields self) let generalize_class_signature_spine sign = (* Generalize the spine of methods *) sign.csig_meths <- Meths.map (fun (priv, virt, ty) -> priv, virt, copy_spine ty) sign.csig_meths (***********************************) (* Matching between type schemes *) (***********************************) (* Level of the subject, should be just below generic_level *) let subject_level = generic_level - 1 (* Update the level of [ty]. First check that the levels of generic variables from the subject are not lowered. *) let moregen_occur env level ty = with_type_mark begin fun mark -> let rec occur ty = let lv = get_level ty in if lv <= level then () else if is_Tvar ty && lv >= subject_level then raise Occur else if try_mark_node mark ty then iter_type_expr occur ty in try occur ty with Occur -> raise_unexplained_for Moregen end; (* also check for free univars *) occur_univar_for Moregen env ty; update_level_for Moregen env level ty let may_instantiate inst_nongen t1 = let level = get_level t1 in if inst_nongen then level <> subject_level else level = generic_level let rec moregen inst_nongen type_pairs env t1 t2 = if eq_type t1 t2 then () else try match (get_desc t1, get_desc t2) with (Tvar _, _) when may_instantiate inst_nongen t1 -> moregen_occur env (get_level t1) t2; update_scope_for Moregen (get_scope t1) t2; occur_for Moregen (Expression {env; in_subst = false}) t1 t2; link_type t1 t2 | (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 -> () | _ -> let t1' = expand_head env t1 in let t2' = expand_head env t2 in (* Expansion may have changed the representative of the types... *) if eq_type t1' t2' then () else if not (TypePairs.mem type_pairs (t1', t2')) then begin TypePairs.add type_pairs (t1', t2'); match (get_desc t1', get_desc t2') with (Tvar _, _) when may_instantiate inst_nongen t1' -> moregen_occur env (get_level t1') t2; update_scope_for Moregen (get_scope t1') t2; link_type t1' t2 | (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) -> eq_labels Moregen ~in_pattern_mode:false l1 l2; moregen inst_nongen type_pairs env t1 t2; moregen inst_nongen type_pairs env u1 u2 | (Ttuple tl1, Ttuple tl2) -> moregen_labeled_list inst_nongen type_pairs env tl1 tl2 | (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) when Path.same p1 p2 -> moregen_list inst_nongen type_pairs env tl1 tl2 | (Tpackage pack1, Tpackage pack2) -> moregen_package inst_nongen type_pairs env (get_level t1') pack1 (get_level t2') pack2 | (Tnil, Tconstr _ ) -> raise_for Moregen (Obj (Abstract_row Second)) | (Tconstr _, Tnil ) -> raise_for Moregen (Obj (Abstract_row First)) | (Tvariant row1, Tvariant row2) -> moregen_row inst_nongen type_pairs env row1 row2 | (Tobject (fi1, _nm1), Tobject (fi2, _nm2)) -> moregen_fields inst_nongen type_pairs env fi1 fi2 | (Tfield _, Tfield _) -> (* Actually unused *) moregen_fields inst_nongen type_pairs env t1' t2' | (Tnil, Tnil) -> () | (Tpoly (t1, []), Tpoly (t2, [])) -> moregen inst_nongen type_pairs env t1 t2 | (Tpoly (t1, tl1), Tpoly (t2, tl2)) -> enter_poly_for Moregen env t1 tl1 t2 tl2 (moregen inst_nongen type_pairs env) | (Tunivar _, Tunivar _) -> unify_univar_for Moregen t1' t2' !univar_pairs | (_, _) -> raise_unexplained_for Moregen end with Moregen_trace trace -> raise_trace_for Moregen (Diff {got = t1; expected = t2} :: trace) and moregen_list inst_nongen type_pairs env tl1 tl2 = if List.length tl1 <> List.length tl2 then raise_unexplained_for Moregen; List.iter2 (moregen inst_nongen type_pairs env) tl1 tl2 and moregen_labeled_list inst_nongen type_pairs env labeled_tl1 labeled_tl2 = if 0 <> List.compare_lengths labeled_tl1 labeled_tl2 then raise_unexplained_for Moregen; List.iter2 (fun (label1, ty1) (label2, ty2) -> if not (Option.equal String.equal label1 label2) then raise_unexplained_for Moregen; moregen inst_nongen type_pairs env ty1 ty2) labeled_tl1 labeled_tl2 and moregen_package inst_nongen type_pairs env lvl1 pack1 lvl2 pack2 = match compare_package env (moregen_list inst_nongen type_pairs env) lvl1 pack1 lvl2 pack2 with | Ok () -> () | Error fme -> raise_for Moregen (First_class_module fme) | exception Not_found -> raise_unexplained_for Moregen and moregen_fields inst_nongen type_pairs env ty1 ty2 = let (fields1, rest1) = flatten_fields ty1 and (fields2, rest2) = flatten_fields ty2 in let (pairs, miss1, miss2) = associate_fields fields1 fields2 in begin match miss1 with | (n, _, _) :: _ -> raise_for Moregen (Obj (Missing_field (Second, n))) | [] -> () end; moregen inst_nongen type_pairs env rest1 (build_fields (get_level ty2) miss2 rest2); List.iter (fun (name, k1, t1, k2, t2) -> (* The below call should never throw [Public_method_to_private_method] *) moregen_kind k1 k2; try moregen inst_nongen type_pairs env t1 t2 with Moregen_trace trace -> raise_trace_for Moregen (incompatible_fields ~name ~got:t1 ~expected:t2 :: trace) ) pairs and moregen_kind k1 k2 = match field_kind_repr k1, field_kind_repr k2 with (Fprivate, (Fprivate | Fpublic)) -> link_kind ~inside:k1 k2 | (Fpublic, Fpublic) -> () | (Fpublic, Fprivate) -> raise Public_method_to_private_method | (Fabsent, _) | (_, Fabsent) -> assert false and moregen_row inst_nongen type_pairs env row1 row2 = let Row {fields = row1_fields; more = rm1; closed = row1_closed} = row_repr row1 in let Row {fields = row2_fields; more = rm2; closed = row2_closed; fixed = row2_fixed} = row_repr row2 in if eq_type rm1 rm2 then () else let may_inst = is_Tvar rm1 && may_instantiate inst_nongen rm1 || get_desc rm1 = Tnil in let r1, r2, pairs = merge_row_fields row1_fields row2_fields in let r1, r2 = if row2_closed then filter_row_fields may_inst r1, filter_row_fields false r2 else r1, r2 in begin if r1 <> [] then raise_for Moregen (Variant (No_tags (Second, r1))) end; if row1_closed then begin match row2_closed, r2 with | false, _ -> raise_for Moregen (Variant (Openness Second)) | _, _ :: _ -> raise_for Moregen (Variant (No_tags (First, r2))) | _, [] -> () end; let md1 = get_desc rm1 (* This lets us undo a following [link_type] *) in begin match md1, get_desc rm2 with Tunivar _, Tunivar _ -> unify_univar_for Moregen rm1 rm2 !univar_pairs | Tunivar _, _ | _, Tunivar _ -> raise_unexplained_for Moregen | _ when static_row row1 -> () | _ when may_inst -> let ext = newgenty (Tvariant (create_row ~fields:r2 ~more:rm2 ~name:None ~fixed:row2_fixed ~closed:row2_closed)) in moregen_occur env (get_level rm1) ext; update_scope_for Moregen (get_scope rm1) ext; (* This [link_type] has to be undone if the rest of the function fails *) link_type rm1 ext | Tconstr _, Tconstr _ -> moregen inst_nongen type_pairs env rm1 rm2 | _ -> raise_unexplained_for Moregen end; try List.iter (fun (l,f1,f2) -> if f1 == f2 then () else match row_field_repr f1, row_field_repr f2 with (* Both matching [Rpresent]s *) | Rpresent(Some t1), Rpresent(Some t2) -> begin try moregen inst_nongen type_pairs env t1 t2 with Moregen_trace trace -> raise_trace_for Moregen (Variant (Incompatible_types_for l) :: trace) end | Rpresent None, Rpresent None -> () (* Both [Reither] *) | Reither(c1, tl1, _), Reither(c2, tl2, m2) -> begin try if not (eq_row_field_ext f1 f2) then begin if c1 && not c2 then raise_unexplained_for Moregen; let f2' = rf_either [] ~use_ext_of:f2 ~no_arg:c2 ~matched:m2 in link_row_field_ext ~inside:f1 f2'; if List.length tl1 = List.length tl2 then List.iter2 (moregen inst_nongen type_pairs env) tl1 tl2 else match tl2 with | t2 :: _ -> List.iter (fun t1 -> moregen inst_nongen type_pairs env t1 t2) tl1 | [] -> if tl1 <> [] then raise_unexplained_for Moregen end with Moregen_trace trace -> raise_trace_for Moregen (Variant (Incompatible_types_for l) :: trace) end (* Generalizing [Reither] *) | Reither(false, tl1, _), Rpresent(Some t2) when may_inst -> begin try link_row_field_ext ~inside:f1 f2; List.iter (fun t1 -> moregen inst_nongen type_pairs env t1 t2) tl1 with Moregen_trace trace -> raise_trace_for Moregen (Variant (Incompatible_types_for l) :: trace) end | Reither(true, [], _), Rpresent None when may_inst -> link_row_field_ext ~inside:f1 f2 | Reither(_, _, _), Rabsent when may_inst -> link_row_field_ext ~inside:f1 f2 (* Both [Rabsent]s *) | Rabsent, Rabsent -> () (* Mismatched constructor arguments *) | Rpresent (Some _), Rpresent None | Rpresent None, Rpresent (Some _) -> raise_for Moregen (Variant (Incompatible_types_for l)) (* Mismatched presence *) | Reither _, Rpresent _ -> raise_for Moregen (Variant (Presence_not_guaranteed_for (First, l))) | Rpresent _, Reither _ -> raise_for Moregen (Variant (Presence_not_guaranteed_for (Second, l))) (* Missing tags *) | Rabsent, (Rpresent _ | Reither _) -> raise_for Moregen (Variant (No_tags (First, [l, f2]))) | (Rpresent _ | Reither _), Rabsent -> raise_for Moregen (Variant (No_tags (Second, [l, f1])))) pairs with exn -> (* Undo [link_type] if we failed *) set_type_desc rm1 md1; raise exn (* Must empty univar_pairs first *) let moregen inst_nongen type_pairs env patt subj = with_univar_pairs [] (fun () -> moregen inst_nongen type_pairs env patt subj) (* Non-generic variable can be instantiated only if [inst_nongen] is true. So, [inst_nongen] should be set to false if the subject might contain non-generic variables (and we do not want them to be instantiated). Usually, the subject is given by the user, and the pattern is unimportant. So, no need to propagate abbreviations. *) let moregeneral env inst_nongen pat_sch subj_sch = (* Moregen splits the generic level into two finer levels: [generic_level] and [subject_level = generic_level - 1]. In order to properly detect and print weak variables when printing errors, we need to merge those levels back together. We do that by starting at level [subject_level - 1], using [with_local_level_generalize] to first set the current level to [subject_level], and then generalize nodes at [subject_level] on exit. Strictly speaking, we could avoid generalizing when there is no error, as nodes at level [subject_level] are never unified with nodes of the original types, but that would be rather ad hoc. *) with_level ~level:(subject_level - 1) begin fun () -> match with_local_level_generalize begin fun () -> assert (!current_level = subject_level); (* Generic variables are first duplicated with [instance]. So, their levels are lowered to [subject_level]. The subject is then copied with [duplicate_type]. That way, its levels won't be changed. *) let subj_inst = instance subj_sch in let subj = duplicate_type subj_inst in (* Duplicate generic variables *) let patt = generic_instance pat_sch in try Ok (moregen inst_nongen (TypePairs.create 13) env patt subj) with Moregen_trace trace -> Error trace end with | Ok () -> () | Error trace -> raise (Moregen (expand_to_moregen_error env trace)) end let is_moregeneral env inst_nongen pat_sch subj_sch = match moregeneral env inst_nongen pat_sch subj_sch with | () -> true | exception Moregen _ -> false (* Alternative approach: "rigidify" a type scheme, and check validity after unification *) (* Simpler, no? *) let rec rigidify_rec mark vars ty = if try_mark_node mark ty then begin match get_desc ty with | Tvar _ -> if not (TypeSet.mem ty !vars) then vars := TypeSet.add ty !vars | Tvariant row -> let Row {more; name; closed} = row_repr row in if is_Tvar more && not (has_fixed_explanation row) then begin let more' = newty2 ~level:(get_level more) (get_desc more) in let row' = create_row ~fixed:(Some Rigid) ~fields:[] ~more:more' ~name ~closed in link_type more (newty2 ~level:(get_level ty) (Tvariant row')) end; iter_row (rigidify_rec mark vars) row; (* only consider the row variable if the variant is not static *) if not (static_row row) then rigidify_rec mark vars (row_more row) | _ -> iter_type_expr (rigidify_rec mark vars) ty end let rigidify ty = let vars = ref TypeSet.empty in with_type_mark (fun mark -> rigidify_rec mark vars ty); TypeSet.elements !vars let all_distinct_vars env vars = let tys = ref TypeSet.empty in List.for_all (fun ty -> let ty = expand_head env ty in if TypeSet.mem ty !tys then false else (tys := TypeSet.add ty !tys; is_Tvar ty)) vars let matches ~expand_error_trace env ty ty' = let snap = snapshot () in let vars = rigidify ty in cleanup_abbrev (); match unify env ty ty' with | () -> if not (all_distinct_vars env vars) then begin backtrack snap; let diff = if expand_error_trace then expanded_diff env ~got:ty ~expected:ty' else unexpanded_diff ~got:ty ~expected:ty' in raise (Matches_failure (env, unification_error ~trace:[diff])) end; backtrack snap | exception Unify err -> backtrack snap; raise (Matches_failure (env, err)) let does_match env ty ty' = match matches ~expand_error_trace:false env ty ty' with | () -> true | exception Matches_failure (_, _) -> false (*********************************************) (* Equivalence between parameterized types *) (*********************************************) let expand_head_rigid env ty = let old = !rigid_variants in rigid_variants := true; let ty' = expand_head env ty in rigid_variants := old; ty' let eqtype_subst type_pairs subst t1 t2 = if List.exists (fun (t,t') -> let found1 = eq_type t1 t in let found2 = eq_type t2 t' in if found1 && found2 then true else if found1 || found2 then raise_unexplained_for Equality else false) !subst then () else begin subst := (t1, t2) :: !subst; TypePairs.add type_pairs (t1, t2) end let rec eqtype rename type_pairs subst env t1 t2 = let check_phys_eq t1 t2 = not rename && eq_type t1 t2 in (* Checking for physical equality of type representatives when [rename] is true would be incorrect: imagine comparing ['a * 'a] with ['b * 'a]. The first ['a] and ['b] would be identified in [eqtype_subst], and then the second ['a] and ['a] would be [eq_type]. So we do not call [eq_type] here. On the other hand, when [rename] is false we need to check for physical equality, as that's the only way variables can be identified. *) if check_phys_eq t1 t2 then () else try match (get_desc t1, get_desc t2) with (Tvar _, Tvar _) when rename -> eqtype_subst type_pairs subst t1 t2 | (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 -> () | _ -> let t1' = expand_head_rigid env t1 in let t2' = expand_head_rigid env t2 in (* Expansion may have changed the representative of the types... *) if check_phys_eq t1' t2' then () else if not (TypePairs.mem type_pairs (t1', t2')) then begin TypePairs.add type_pairs (t1', t2'); match (get_desc t1', get_desc t2') with (Tvar _, Tvar _) when rename -> eqtype_subst type_pairs subst t1' t2' | (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) -> eq_labels Equality ~in_pattern_mode:false l1 l2; eqtype rename type_pairs subst env t1 t2; eqtype rename type_pairs subst env u1 u2 | (Ttuple tl1, Ttuple tl2) -> eqtype_labeled_list rename type_pairs subst env tl1 tl2 | (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) when Path.same p1 p2 -> eqtype_list_same_length rename type_pairs subst env tl1 tl2 | (Tpackage pack1, Tpackage pack2) -> eqtype_package rename type_pairs subst env (get_level t1') pack1 (get_level t2') pack2 | (Tnil, Tconstr _ ) -> raise_for Equality (Obj (Abstract_row Second)) | (Tconstr _, Tnil ) -> raise_for Equality (Obj (Abstract_row First)) | (Tvariant row1, Tvariant row2) -> eqtype_row rename type_pairs subst env row1 row2 | (Tobject (fi1, _nm1), Tobject (fi2, _nm2)) -> eqtype_fields rename type_pairs subst env fi1 fi2 | (Tfield _, Tfield _) -> (* Actually unused *) eqtype_fields rename type_pairs subst env t1' t2' | (Tnil, Tnil) -> () | (Tpoly (t1, []), Tpoly (t2, [])) -> eqtype rename type_pairs subst env t1 t2 | (Tpoly (t1, tl1), Tpoly (t2, tl2)) -> enter_poly_for Equality env t1 tl1 t2 tl2 (eqtype rename type_pairs subst env) | (Tunivar _, Tunivar _) -> unify_univar_for Equality t1' t2' !univar_pairs | (_, _) -> raise_unexplained_for Equality end with Equality_trace trace -> raise_trace_for Equality (Diff {got = t1; expected = t2} :: trace) and eqtype_list_same_length rename type_pairs subst env tl1 tl2 = List.iter2 (eqtype rename type_pairs subst env) tl1 tl2 and eqtype_list rename type_pairs subst env tl1 tl2 = if List.length tl1 <> List.length tl2 then raise_unexplained_for Equality; eqtype_list_same_length rename type_pairs subst env tl1 tl2 and eqtype_labeled_list rename type_pairs subst env labeled_tl1 labeled_tl2 = if 0 <> List.compare_lengths labeled_tl1 labeled_tl2 then raise_unexplained_for Equality; List.iter2 (fun (label1, ty1) (label2, ty2) -> if not (Option.equal String.equal label1 label2) then raise_unexplained_for Equality; eqtype rename type_pairs subst env ty1 ty2) labeled_tl1 labeled_tl2 and eqtype_package rename type_pairs subst env lvl1 pack1 lvl2 pack2 = match compare_package env (eqtype_list rename type_pairs subst env) lvl1 pack1 lvl2 pack2 with | Ok () -> () | Error fme -> raise_for Equality (First_class_module fme) | exception Not_found -> raise_unexplained_for Equality and eqtype_fields rename type_pairs subst env ty1 ty2 = let (fields1, rest1) = flatten_fields ty1 in let (fields2, rest2) = flatten_fields ty2 in (* First check if same row => already equal *) let same_row = (* [not rename]: see comment at top of [eqtype] *) (not rename && eq_type rest1 rest2) || TypePairs.mem type_pairs (rest1,rest2) in if same_row then () else (* Try expansion, needed when called from Includecore.type_manifest *) match get_desc (expand_head_rigid env rest2) with Tobject(ty2,_) -> eqtype_fields rename type_pairs subst env ty1 ty2 | _ -> let (pairs, miss1, miss2) = associate_fields fields1 fields2 in eqtype rename type_pairs subst env rest1 rest2; match miss1, miss2 with | ((n, _, _)::_, _) -> raise_for Equality (Obj (Missing_field (Second, n))) | (_, (n, _, _)::_) -> raise_for Equality (Obj (Missing_field (First, n))) | [], [] -> List.iter (function (name, k1, t1, k2, t2) -> eqtype_kind k1 k2; try eqtype rename type_pairs subst env t1 t2; with Equality_trace trace -> raise_trace_for Equality (incompatible_fields ~name ~got:t1 ~expected:t2 :: trace)) pairs and eqtype_kind k1 k2 = let k1 = field_kind_repr k1 in let k2 = field_kind_repr k2 in match k1, k2 with | (Fprivate, Fprivate) | (Fpublic, Fpublic) -> () | _ -> raise_unexplained_for Unify (* It's probably not possible to hit this case with real OCaml code *) and eqtype_row rename type_pairs subst env row1 row2 = (* Try expansion, needed when called from Includecore.type_manifest *) match get_desc (expand_head_rigid env (row_more row2)) with Tvariant row2 -> eqtype_row rename type_pairs subst env row1 row2 | _ -> let r1, r2, pairs = merge_row_fields (row_fields row1) (row_fields row2) in if row_closed row1 <> row_closed row2 then begin raise_for Equality (Variant (Openness (if row_closed row2 then First else Second))) end; if not (row_closed row1) then begin match r1, r2 with | _::_, _ -> raise_for Equality (Variant (No_tags (Second, r1))) | _, _::_ -> raise_for Equality (Variant (No_tags (First, r2))) | _, _ -> () end; begin match filter_row_fields false r1 with | [] -> (); | _ :: _ as r1 -> raise_for Equality (Variant (No_tags (Second, r1))) end; begin match filter_row_fields false r2 with | [] -> () | _ :: _ as r2 -> raise_for Equality (Variant (No_tags (First, r2))) end; if not (static_row row1) then eqtype rename type_pairs subst env (row_more row1) (row_more row2); List.iter (fun (l,f1,f2) -> if f1 == f2 then () else match row_field_repr f1, row_field_repr f2 with (* Both matching [Rpresent]s *) | Rpresent(Some t1), Rpresent(Some t2) -> begin try eqtype rename type_pairs subst env t1 t2 with Equality_trace trace -> raise_trace_for Equality (Variant (Incompatible_types_for l) :: trace) end | Rpresent None, Rpresent None -> () (* Both matching [Reither]s *) | Reither(c1, [], _), Reither(c2, [], _) when c1 = c2 -> () | Reither(c1, t1::tl1, _), Reither(c2, t2::tl2, _) when c1 = c2 -> begin try eqtype rename type_pairs subst env t1 t2; if List.length tl1 = List.length tl2 then (* if same length allow different types (meaning?) *) List.iter2 (eqtype rename type_pairs subst env) tl1 tl2 else begin (* otherwise everything must be equal *) List.iter (eqtype rename type_pairs subst env t1) tl2; List.iter (fun t1 -> eqtype rename type_pairs subst env t1 t2) tl1 end with Equality_trace trace -> raise_trace_for Equality (Variant (Incompatible_types_for l) :: trace) end (* Both [Rabsent]s *) | Rabsent, Rabsent -> () (* Mismatched constructor arguments *) | Rpresent (Some _), Rpresent None | Rpresent None, Rpresent (Some _) | Reither _, Reither _ -> raise_for Equality (Variant (Incompatible_types_for l)) (* Mismatched presence *) | Reither _, Rpresent _ -> raise_for Equality (Variant (Presence_not_guaranteed_for (First, l))) | Rpresent _, Reither _ -> raise_for Equality (Variant (Presence_not_guaranteed_for (Second, l))) (* Missing tags *) | Rabsent, (Rpresent _ | Reither _) -> raise_for Equality (Variant (No_tags (First, [l, f2]))) | (Rpresent _ | Reither _), Rabsent -> raise_for Equality (Variant (No_tags (Second, [l, f1])))) pairs (* Must empty univar_pairs first *) let eqtype_list_same_length rename type_pairs subst env tl1 tl2 = with_univar_pairs [] (fun () -> let snap = Btype.snapshot () in Misc.try_finally ~always:(fun () -> backtrack snap) (fun () -> eqtype_list_same_length rename type_pairs subst env tl1 tl2)) let eqtype rename type_pairs subst env t1 t2 = eqtype_list_same_length rename type_pairs subst env [t1] [t2] (* Two modes: with or without renaming of variables *) let equal env rename tyl1 tyl2 = if List.length tyl1 <> List.length tyl2 then raise_unexplained_for Equality; if List.for_all2 eq_type tyl1 tyl2 then () else let subst = ref [] in try eqtype_list_same_length rename (TypePairs.create 11) subst env tyl1 tyl2 with Equality_trace trace -> raise (Equality (expand_to_equality_error env trace !subst)) let is_equal env rename tyl1 tyl2 = match equal env rename tyl1 tyl2 with | () -> true | exception Equality _ -> false let rec equal_private env params1 ty1 params2 ty2 = match equal env true (params1 @ [ty1]) (params2 @ [ty2]) with | () -> () | exception (Equality _ as err) -> match try_expand_safe_opt env (expand_head env ty1) with | ty1' -> equal_private env params1 ty1' params2 ty2 | exception Cannot_expand -> raise err (*************************) (* Class type matching *) (*************************) type class_match_failure = CM_Virtual_class | CM_Parameter_arity_mismatch of int * int | CM_Type_parameter_mismatch of int * Env.t * equality_error | CM_Class_type_mismatch of Env.t * class_type * class_type | CM_Parameter_mismatch of int * Env.t * moregen_error | CM_Val_type_mismatch of string * Env.t * comparison_error | CM_Meth_type_mismatch of string * Env.t * comparison_error | CM_Non_mutable_value of string | CM_Non_concrete_value of string | CM_Missing_value of string | CM_Missing_method of string | CM_Hide_public of string | CM_Hide_virtual of string * string | CM_Public_method of string | CM_Private_method of string | CM_Virtual_method of string exception Failure of class_match_failure list let match_class_sig_shape ~strict sign1 sign2 = let errors = Meths.fold (fun lab (priv, vr, _) err -> match Meths.find lab sign1.csig_meths with | exception Not_found -> CM_Missing_method lab::err | (priv', vr', _) -> match priv', priv with | Mpublic, Mprivate _ -> CM_Public_method lab::err | Mprivate _, Mpublic when strict -> CM_Private_method lab::err | _, _ -> match vr', vr with | Virtual, Concrete -> CM_Virtual_method lab::err | _, _ -> err) sign2.csig_meths [] in let errors = Meths.fold (fun lab (priv, vr, _) err -> if Meths.mem lab sign2.csig_meths then err else begin let err = match priv with | Mpublic -> CM_Hide_public lab :: err | Mprivate _ -> err in match vr with | Virtual -> CM_Hide_virtual ("method", lab) :: err | Concrete -> err end) sign1.csig_meths errors in let errors = Vars.fold (fun lab (mut, vr, _) err -> match Vars.find lab sign1.csig_vars with | exception Not_found -> CM_Missing_value lab::err | (mut', vr', _) -> match mut', mut with | Immutable, Mutable -> CM_Non_mutable_value lab::err | _, _ -> match vr', vr with | Virtual, Concrete -> CM_Non_concrete_value lab::err | _, _ -> err) sign2.csig_vars errors in Vars.fold (fun lab (_,vr,_) err -> if vr = Virtual && not (Vars.mem lab sign2.csig_vars) then CM_Hide_virtual ("instance variable", lab) :: err else err) sign1.csig_vars errors (* [arrow_index] is the number of [Cty_arrow] constructors we've seen so far. *) let rec moregen_clty ~arrow_index trace type_pairs env cty1 cty2 = try match cty1, cty2 with | Cty_constr (_, _, cty1), _ -> moregen_clty ~arrow_index true type_pairs env cty1 cty2 | _, Cty_constr (_, _, cty2) -> moregen_clty ~arrow_index true type_pairs env cty1 cty2 | Cty_arrow (l1, ty1, cty1'), Cty_arrow (l2, ty2, cty2') when l1 = l2 -> let arrow_index = arrow_index + 1 in begin try moregen true type_pairs env ty1 ty2 with Moregen_trace trace -> raise (Failure [ CM_Parameter_mismatch (arrow_index, env, expand_to_moregen_error env trace)]) end; moregen_clty ~arrow_index false type_pairs env cty1' cty2' | Cty_signature sign1, Cty_signature sign2 -> Meths.iter (fun lab (_, _, ty) -> match Meths.find lab sign1.csig_meths with | exception Not_found -> (* This function is only called after checking that all methods in sign2 are present in sign1. *) assert false | (_, _, ty') -> match moregen true type_pairs env ty' ty with | () -> () | exception Moregen_trace trace -> raise (Failure [ CM_Meth_type_mismatch (lab, env, Moregen_error (expand_to_moregen_error env trace))])) sign2.csig_meths; Vars.iter (fun lab (_, _, ty) -> match Vars.find lab sign1.csig_vars with | exception Not_found -> (* This function is only called after checking that all instance variables in sign2 are present in sign1. *) assert false | (_, _, ty') -> match moregen true type_pairs env ty' ty with | () -> () | exception Moregen_trace trace -> raise (Failure [ CM_Val_type_mismatch (lab, env, Moregen_error (expand_to_moregen_error env trace))])) sign2.csig_vars | _ -> raise (Failure []) with Failure error when trace || error = [] -> raise (Failure (CM_Class_type_mismatch (env, cty1, cty2)::error)) let moregen_clty trace type_pairs env cty1 cty2 = moregen_clty ~arrow_index:0 trace type_pairs env cty1 cty2 let match_class_types ?(trace=true) env pat_sch subj_sch = let sign1 = signature_of_class_type pat_sch in let sign2 = signature_of_class_type subj_sch in let errors = match_class_sig_shape ~strict:false sign1 sign2 in match errors with | [] -> (* Moregen splits the generic level into two finer levels: [generic_level] and [subject_level = generic_level - 1]. In order to properly detect and print weak variables when printing errors, we need to merge those levels back together. We do that by starting at level [subject_level - 1], using [with_local_level_generalize] to first set the current level to [subject_level], and then generalize nodes at [subject_level] on exit. Strictly speaking, we could avoid generalizing when there is no error, as nodes at level [subject_level] are never unified with nodes of the original types, but that would be rather ad hoc. *) with_level ~level:(subject_level - 1) begin fun () -> with_local_level_generalize begin fun () -> assert (!current_level = subject_level); (* Generic variables are first duplicated with [instance]. So, their levels are lowered to [subject_level]. The subject is then copied with [duplicate_type]. That way, its levels won't be changed. *) let (_, subj_inst) = instance_class [] subj_sch in let subj = duplicate_class_type subj_inst in (* Duplicate generic variables *) let (_, patt) = with_level ~level:generic_level (fun () -> instance_class [] pat_sch) in let type_pairs = TypePairs.create 53 in let sign1 = signature_of_class_type patt in let sign2 = signature_of_class_type subj in let self1 = sign1.csig_self in let self2 = sign2.csig_self in let row1 = sign1.csig_self_row in let row2 = sign2.csig_self_row in TypePairs.add type_pairs (self1, self2); (* Always succeeds *) moregen true type_pairs env row1 row2; (* May fail *) try moregen_clty trace type_pairs env patt subj; [] with Failure res -> res end end | errors -> CM_Class_type_mismatch (env, pat_sch, subj_sch) :: errors let equal_clsig trace type_pairs subst env sign1 sign2 = try Meths.iter (fun lab (_, _, ty) -> match Meths.find lab sign1.csig_meths with | exception Not_found -> (* This function is only called after checking that all methods in sign2 are present in sign1. *) assert false | (_, _, ty') -> match eqtype true type_pairs subst env ty' ty with | () -> () | exception Equality_trace trace -> raise (Failure [ CM_Meth_type_mismatch (lab, env, Equality_error (expand_to_equality_error env trace !subst))])) sign2.csig_meths; Vars.iter (fun lab (_, _, ty) -> match Vars.find lab sign1.csig_vars with | exception Not_found -> (* This function is only called after checking that all instance variables in sign2 are present in sign1. *) assert false | (_, _, ty') -> match eqtype true type_pairs subst env ty' ty with | () -> () | exception Equality_trace trace -> raise (Failure [ CM_Val_type_mismatch (lab, env, Equality_error (expand_to_equality_error env trace !subst))])) sign2.csig_vars with Failure error when trace -> raise (Failure (CM_Class_type_mismatch (env, Cty_signature sign1, Cty_signature sign2)::error)) let match_class_declarations env patt_params patt_type subj_params subj_type = let sign1 = signature_of_class_type patt_type in let sign2 = signature_of_class_type subj_type in let errors = match_class_sig_shape ~strict:true sign1 sign2 in match errors with | [] -> begin try let subst = ref [] in let type_pairs = TypePairs.create 53 in let self1 = sign1.csig_self in let self2 = sign2.csig_self in let row1 = sign1.csig_self_row in let row2 = sign2.csig_self_row in TypePairs.add type_pairs (self1, self2); (* Always succeeds *) eqtype true type_pairs subst env row1 row2; let lp = List.length patt_params in let ls = List.length subj_params in if lp <> ls then raise (Failure [CM_Parameter_arity_mismatch (lp, ls)]); Stdlib.List.iteri2 (fun n p s -> try eqtype true type_pairs subst env p s with Equality_trace trace -> raise (Failure [CM_Type_parameter_mismatch (n+1, env, expand_to_equality_error env trace !subst)])) patt_params subj_params; (* old code: equal_clty false type_pairs subst env patt_type subj_type; *) equal_clsig false type_pairs subst env sign1 sign2; (* Use moregeneral for class parameters, need to recheck everything to keeps relationships (PR#4824) *) let clty_params = List.fold_right (fun ty cty -> Cty_arrow (Labelled "*",ty,cty)) in match_class_types ~trace:false env (clty_params patt_params patt_type) (clty_params subj_params subj_type) with Failure r -> r end | error -> error (***************) (* Subtyping *) (***************) (**** Build a subtype of a given type. ****) (* build_subtype: [visited] traces traversed object and variant types [loops] is a mapping from variables to variables, to reproduce positive loops in a class type [posi] true if the current variance is positive [level] number of expansions/enlargement allowed on this branch *) let warn = ref false (* whether double coercion might do better *) let pred_expand n = if n mod 2 = 0 && n > 0 then pred n else n let pred_enlarge n = if n mod 2 = 1 then pred n else n type change = Unchanged | Equiv | Changed let max_change c1 c2 = match c1, c2 with | _, Changed | Changed, _ -> Changed | Equiv, _ | _, Equiv -> Equiv | _ -> Unchanged let collect l = List.fold_left (fun c1 (_, c2) -> max_change c1 c2) Unchanged l let rec filter_visited = function [] -> [] | {desc=Tobject _|Tvariant _} :: _ as l -> l | _ :: l -> filter_visited l let memq_warn t visited = if List.memq t visited then (warn := true; true) else false let find_cltype_for_path env p = let cl_abbr = Env.find_hash_type p env in match cl_abbr.type_manifest with Some ty -> begin match get_desc ty with Tobject(_,{contents=Some(p',_)}) when Path.same p p' -> cl_abbr, ty | _ -> raise Not_found end | None -> assert false let has_constr_row' env t = has_constr_row (expand_abbrev env t) let rec build_subtype env (visited : transient_expr list) (loops : (int * type_expr) list) posi level t = match get_desc t with Tvar _ -> if posi then try let t' = List.assq (get_id t) loops in warn := true; (t', Equiv) with Not_found -> (t, Unchanged) else (t, Unchanged) | Tarrow(l, t1, t2, _) -> let tt = Transient_expr.repr t in if memq_warn tt visited then (t, Unchanged) else let visited = tt :: visited in let (t1', c1) = build_subtype env visited loops (not posi) level t1 in let (t2', c2) = build_subtype env visited loops posi level t2 in let c = max_change c1 c2 in if c > Unchanged then (newty (Tarrow(l, t1', t2', commu_ok)), c) else (t, Unchanged) | Ttuple labeled_tlist -> let tt = Transient_expr.repr t in if memq_warn tt visited then (t, Unchanged) else let visited = tt :: visited in let labels, tlist = List.split labeled_tlist in let tlist' = List.map (build_subtype env visited loops posi level) tlist in let c = collect tlist' in if c > Unchanged then (newty (Ttuple (List.combine labels (List.map fst tlist'))), c) else (t, Unchanged) | Tconstr(p, tl, abbrev) when level > 0 && generic_abbrev env p && safe_abbrev env t && not (has_constr_row' env t) -> let t' = expand_abbrev env t in let level' = pred_expand level in begin try match get_desc t' with Tobject _ when posi && not (opened_object t') -> let cl_abbr, body = find_cltype_for_path env p in let ty = try subst env !current_level Public abbrev None cl_abbr.type_params tl body with Cannot_subst -> assert false in let ty1, tl1 = match get_desc ty with Tobject(ty1,{contents=Some(p',tl1)}) when Path.same p p' -> ty1, tl1 | _ -> raise Not_found in (* Fix PR#4505: do not set ty to Tvar when it appears in tl1, as this occurrence might break the occur check. XXX not clear whether this correct anyway... *) if deep_occur_list ty tl1 then raise Not_found; set_type_desc ty (Tvar None); let t'' = newvar () in let loops = (get_id ty, t'') :: loops in (* May discard [visited] as level is going down *) let (ty1', c) = build_subtype env [Transient_expr.repr t'] loops posi (pred_enlarge level') ty1 in assert (is_Tvar t''); let nm = if c > Equiv || deep_occur ty ty1' then None else Some(p,tl1) in set_type_desc t'' (Tobject (ty1', ref nm)); (try unify_var env ty t with Unify _ -> assert false); ( t'', Changed) | _ -> raise Not_found with Not_found -> let (t'',c) = build_subtype env visited loops posi level' t' in if c > Unchanged then (t'',c) else (t, Unchanged) end | Tconstr(p, tl, _abbrev) -> (* Must check recursion on constructors, since we do not always expand them *) let tt = Transient_expr.repr t in if memq_warn tt visited then (t, Unchanged) else let visited = tt :: visited in begin try let decl = Env.find_type p env in if level = 0 && generic_abbrev env p && safe_abbrev env t && not (has_constr_row' env t) then warn := true; let tl' = List.map2 (fun v t -> let (co,cn) = Variance.get_upper v in if cn then if co then (t, Unchanged) else build_subtype env visited loops (not posi) level t else if co then build_subtype env visited loops posi level t else (newvar(), Changed)) decl.type_variance tl in let c = collect tl' in if c > Unchanged then (newconstr p (List.map fst tl'), c) else (t, Unchanged) with Not_found -> (t, Unchanged) end | Tvariant row -> let tt = Transient_expr.repr t in if memq_warn tt visited || not (static_row row) then (t, Unchanged) else let level' = pred_enlarge level in let visited = tt :: if level' < level then [] else filter_visited visited in let fields = filter_row_fields false (row_fields row) in let fields = List.map (fun (l,f as orig) -> match row_field_repr f with Rpresent None -> if posi then (l, rf_either_of None), Unchanged else orig, Unchanged | Rpresent(Some t) -> let (t', c) = build_subtype env visited loops posi level' t in let f = if posi && level > 0 then rf_either_of (Some t') else rf_present (Some t') in (l, f), c | _ -> assert false) fields in let c = collect fields in let row = create_row ~fields:(List.map fst fields) ~more:(newvar ()) ~closed:posi ~fixed:None ~name:(if c > Unchanged then None else row_name row) in (newty (Tvariant row), Changed) | Tobject (t1, _) -> let tt = Transient_expr.repr t in if memq_warn tt visited || opened_object t1 then (t, Unchanged) else let level' = pred_enlarge level in let visited = tt :: if level' < level then [] else filter_visited visited in let (t1', c) = build_subtype env visited loops posi level' t1 in if c > Unchanged then (newty (Tobject (t1', ref None)), c) else (t, Unchanged) | Tfield(s, _, t1, t2) (* Always present *) -> let (t1', c1) = build_subtype env visited loops posi level t1 in let (t2', c2) = build_subtype env visited loops posi level t2 in let c = max_change c1 c2 in if c > Unchanged then (newty (Tfield(s, field_public, t1', t2')), c) else (t, Unchanged) | Tnil -> if posi then let v = newvar () in (v, Changed) else begin warn := true; (t, Unchanged) end | Tsubst _ | Tlink _ -> assert false | Tpoly(t1, tl) -> let (t1', c) = build_subtype env visited loops posi level t1 in if c > Unchanged then (newty (Tpoly(t1', tl)), c) else (t, Unchanged) | Tunivar _ | Tpackage _ -> (t, Unchanged) let enlarge_type env ty = warn := false; (* [level = 4] allows 2 expansions involving objects/variants *) let (ty', _) = build_subtype env [] [] true 4 ty in (ty', !warn) (**** Check whether a type is a subtype of another type. ****) (* During the traversal, a trace of visited types is maintained. It is printed in case of error. Constraints (pairs of types that must be equals) are accumulated rather than being enforced straight. Indeed, the result would otherwise depend on the order in which these constraints are enforced. A function enforcing these constraints is returned. That way, type variables can be bound to their actual values before this function is called (see Typecore). Only well-defined abbreviations are expanded (hence the tests [generic_abbrev ...]). *) let subtypes = TypePairs.create 17 let subtype_error ~env ~trace ~unification_trace = raise (Subtype (Subtype.error ~trace:(expand_subtype_trace env (List.rev trace)) ~unification_trace)) let rec subtype_rec env trace t1 t2 cstrs = if eq_type t1 t2 then cstrs else if TypePairs.mem subtypes (t1, t2) then cstrs else begin TypePairs.add subtypes (t1, t2); match (get_desc t1, get_desc t2) with (Tvar _, _) | (_, Tvar _) -> (trace, t1, t2, !univar_pairs)::cstrs | (Tarrow(l1, t1, u1, _), Tarrow(l2, t2, u2, _)) when compatible_labels ~in_pattern_mode:false l1 l2 -> let cstrs = subtype_rec env (Subtype.Diff {got = t2; expected = t1} :: trace) t2 t1 cstrs in subtype_rec env (Subtype.Diff {got = u1; expected = u2} :: trace) u1 u2 cstrs | (Ttuple tl1, Ttuple tl2) -> subtype_labeled_list env trace tl1 tl2 cstrs | (Tconstr(p1, [], _), Tconstr(p2, [], _)) when Path.same p1 p2 -> cstrs | (Tconstr(p1, _tl1, _abbrev1), _) when generic_abbrev env p1 && safe_abbrev env t1 -> subtype_rec env trace (expand_abbrev env t1) t2 cstrs | (_, Tconstr(p2, _tl2, _abbrev2)) when generic_abbrev env p2 && safe_abbrev env t2 -> subtype_rec env trace t1 (expand_abbrev env t2) cstrs | (Tconstr(p1, tl1, _), Tconstr(p2, tl2, _)) when Path.same p1 p2 -> begin try let decl = Env.find_type p1 env in List.fold_left2 (fun cstrs v (t1, t2) -> let (co, cn) = Variance.get_upper v in if co then if cn then (trace, newty2 ~level:(get_level t1) (Ttuple[None, t1]), newty2 ~level:(get_level t2) (Ttuple[None, t2]), !univar_pairs) :: cstrs else subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs else if cn then subtype_rec env (Subtype.Diff {got = t2; expected = t1} :: trace) t2 t1 cstrs else cstrs) cstrs decl.type_variance (List.combine tl1 tl2) with Not_found -> (trace, t1, t2, !univar_pairs)::cstrs end | (Tconstr(p1, _, _), _) when generic_private_abbrev env p1 && safe_abbrev_opt env t1 -> subtype_rec env trace (expand_abbrev_opt env t1) t2 cstrs (* | (_, Tconstr(p2, _, _)) when generic_private_abbrev false env p2 -> subtype_rec env trace t1 (expand_abbrev_opt env t2) cstrs *) | (Tobject (f1, _), Tobject (f2, _)) when is_Tvar (object_row f1) && is_Tvar (object_row f2) -> (* Same row variable implies same object. *) (trace, t1, t2, !univar_pairs)::cstrs | (Tobject (f1, _), Tobject (f2, _)) -> subtype_fields env trace f1 f2 cstrs | (Tvariant row1, Tvariant row2) -> begin try subtype_row env trace row1 row2 cstrs with Exit -> (trace, t1, t2, !univar_pairs)::cstrs end | (Tpoly (u1, []), Tpoly (u2, [])) -> subtype_rec env trace u1 u2 cstrs | (Tpoly (u1, tl1), Tpoly (u2, [])) -> let _, u1' = instance_poly ~fixed:false tl1 u1 in subtype_rec env trace u1' u2 cstrs | (Tpoly (u1, tl1), Tpoly (u2,tl2)) -> begin try enter_poly env u1 tl1 u2 tl2 (fun t1 t2 -> subtype_rec env trace t1 t2 cstrs) with Escape _ -> (trace, t1, t2, !univar_pairs)::cstrs end | (Tpackage pack1, Tpackage pack2) -> subtype_package env trace (get_level t1) pack1 (get_level t2) pack2 cstrs | (_, _) -> (trace, t1, t2, !univar_pairs)::cstrs end and subtype_labeled_list env trace labeled_tl1 labeled_tl2 cstrs = if 0 <> List.compare_lengths labeled_tl1 labeled_tl2 then subtype_error ~env ~trace ~unification_trace:[]; List.fold_left2 (fun cstrs (label1, ty1) (label2, ty2) -> if not (Option.equal String.equal label1 label2) then subtype_error ~env ~trace ~unification_trace:[]; subtype_rec env (Subtype.Diff { got = ty1; expected = ty2 } :: trace) ty1 ty2 cstrs) cstrs labeled_tl1 labeled_tl2 and subtype_package env trace lvl1 pack1 lvl2 pack2 cstrs = try let ntl1 = complete_type_list env pack2.pack_cstrs lvl1 pack1 and ntl2 = complete_type_list env pack1.pack_cstrs lvl2 pack2 ~allow_absent:true in let cstrs' = List.map (fun (n2,t2) -> (trace, List.assoc n2 ntl1, t2, !univar_pairs)) ntl2 in if eq_package_path env pack1.pack_path pack2.pack_path then cstrs' @ cstrs else begin (* need to check module subtyping *) let snap = Btype.snapshot () in match List.iter (fun (_, t1, t2, _) -> unify env t1 t2) cstrs' with | () when Result.is_ok (!package_subtype env pack1 pack2) -> Btype.backtrack snap; cstrs' @ cstrs | () | exception Unify _ -> Btype.backtrack snap; raise Not_found end with Not_found -> (trace, newty (Tpackage pack1), newty (Tpackage pack2), !univar_pairs) ::cstrs and subtype_fields env trace ty1 ty2 cstrs = (* Assume that either rest1 or rest2 is not Tvar *) let (fields1, rest1) = flatten_fields ty1 in let (fields2, rest2) = flatten_fields ty2 in let (pairs, miss1, miss2) = associate_fields fields1 fields2 in let cstrs = if get_desc rest2 = Tnil then cstrs else if miss1 = [] then subtype_rec env (Subtype.Diff {got = rest1; expected = rest2} :: trace) rest1 rest2 cstrs else (trace, build_fields (get_level ty1) miss1 rest1, rest2, !univar_pairs) :: cstrs in let cstrs = if miss2 = [] then cstrs else (trace, rest1, build_fields (get_level ty2) miss2 (newvar ()), !univar_pairs) :: cstrs in List.fold_left (fun cstrs (_, _k1, t1, _k2, t2) -> (* These fields are always present *) subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs) cstrs pairs and subtype_row env trace row1 row2 cstrs = let Row {fields = row1_fields; more = more1; closed = row1_closed} = row_repr row1 in let Row {fields = row2_fields; more = more2; closed = row2_closed} = row_repr row2 in let r1, r2, pairs = merge_row_fields row1_fields row2_fields in let r1 = if row2_closed then filter_row_fields false r1 else r1 in let r2 = if row1_closed then filter_row_fields false r2 else r2 in match get_desc more1, get_desc more2 with Tconstr(p1,_,_), Tconstr(p2,_,_) when Path.same p1 p2 -> subtype_rec env (Subtype.Diff {got = more1; expected = more2} :: trace) more1 more2 cstrs | (Tvar _|Tconstr _|Tnil), (Tvar _|Tconstr _|Tnil) when row1_closed && r1 = [] -> List.fold_left (fun cstrs (l,f1,f2) -> match row_field_repr f1, row_field_repr f2 with (Rpresent None|Reither(true,_,_)), Rpresent None -> cstrs | Rpresent(Some t1), Rpresent(Some t2) -> subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs | Reither(false, t1::_, _), Rpresent(Some t2) -> subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs | Rabsent, _ -> cstrs | Rpresent None, Rpresent (Some _) | Rpresent (Some _), Rpresent None -> subtype_error ~env ~trace ~unification_trace:[Variant (Incompatible_types_for l)] | _ -> raise Exit) cstrs pairs | Tunivar _, Tunivar _ when row1_closed = row2_closed && r1 = [] && r2 = [] -> let cstrs = subtype_rec env (Subtype.Diff {got = more1; expected = more2} :: trace) more1 more2 cstrs in List.fold_left (fun cstrs (_,f1,f2) -> match row_field_repr f1, row_field_repr f2 with Rpresent None, Rpresent None | Reither(true,[],_), Reither(true,[],_) | Rabsent, Rabsent -> cstrs | Rpresent(Some t1), Rpresent(Some t2) | Reither(false,[t1],_), Reither(false,[t2],_) -> subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs | _ -> raise Exit) cstrs pairs | _ -> raise Exit let subtype env ty1 ty2 = TypePairs.clear subtypes; with_univar_pairs [] (fun () -> (* Build constraint set. *) let cstrs = subtype_rec env [Subtype.Diff {got = ty1; expected = ty2}] ty1 ty2 [] in TypePairs.clear subtypes; (* Enforce constraints. *) function () -> List.iter (function (trace0, t1, t2, pairs) -> try unify_pairs env t1 t2 pairs with Unify {trace} -> subtype_error ~env ~trace:trace0 ~unification_trace:(List.tl trace)) (List.rev cstrs)) (*******************) (* Miscellaneous *) (*******************) (* Utility for printing. The resulting type is not used in computation. *) let rec unalias_object ty = let level = get_level ty in match get_desc ty with Tfield (s, k, t1, t2) -> newty2 ~level (Tfield (s, k, t1, unalias_object t2)) | Tvar _ | Tnil as desc -> newty2 ~level desc | Tunivar _ -> ty | Tconstr _ -> newvar2 level | _ -> assert false let unalias ty = let level = get_level ty in match get_desc ty with Tvar _ | Tunivar _ -> ty | Tvariant row -> let Row {fields; more; name; fixed; closed} = row_repr row in newty2 ~level (Tvariant (create_row ~fields ~name ~fixed ~closed ~more: (newty2 ~level:(get_level more) (get_desc more)))) | Tobject (ty, nm) -> newty2 ~level (Tobject (unalias_object ty, nm)) | desc -> newty2 ~level desc (* Return the arity (as for curried functions) of the given type. *) let rec arity ty = match get_desc ty with Tarrow(_, _t1, t2, _) -> 1 + arity t2 | _ -> 0 (* Check for non-generalizable type variables *) let add_nongen_vars_in_schema = let rec loop env ((visited, weak_set) as acc) ty = if TypeSet.mem ty visited then acc else begin let visited = TypeSet.add ty visited in match get_desc ty with | Tvar _ when get_level ty <> generic_level -> visited, TypeSet.add ty weak_set | Tconstr _ -> let (_, unexpanded_candidate) as unexpanded_candidate' = fold_type_expr (loop env) (visited, weak_set) ty in (* Using `==` is okay because `loop` will return the original set when it does not change it. Similarly, `TypeSet.add` will return the original set if the element is already present. *) if unexpanded_candidate == weak_set then (visited, weak_set) else begin match loop env (visited, weak_set) (try_expand_head try_expand_safe env ty) with | exception Cannot_expand -> unexpanded_candidate' | expanded_result -> expanded_result end | Tfield(_, kind, t1, t2) -> let visited, weak_set = match field_kind_repr kind with | Fpublic -> loop env (visited, weak_set) t1 | _ -> visited, weak_set in loop env (visited, weak_set) t2 | Tvariant row -> let visited, weak_set = fold_row (loop env) (visited, weak_set) row in if not (static_row row) then loop env (visited, weak_set) (row_more row) else (visited, weak_set) | _ -> fold_type_expr (loop env) (visited, weak_set) ty end in fun env acc ty -> let _, result = loop env (TypeSet.empty, acc) ty in result (* Return all non-generic variables of [ty]. *) let nongen_vars_in_schema env ty = let result = add_nongen_vars_in_schema env TypeSet.empty ty in if TypeSet.is_empty result then None else Some result (* Check that all type variables are generalizable *) (* Use Env.empty to prevent expansion of recursively defined object types; cf. typing-poly/poly.ml *) let nongen_class_type = let add_nongen_vars_in_schema' ty weak_set = add_nongen_vars_in_schema Env.empty weak_set ty in let add_nongen_vars_in_schema_fold fold m weak_set = let f _key (_,_,ty) weak_set = add_nongen_vars_in_schema Env.empty weak_set ty in fold f m weak_set in let rec nongen_class_type cty weak_set = match cty with | Cty_constr (_, params, _) -> List.fold_left (add_nongen_vars_in_schema Env.empty) weak_set params | Cty_signature sign -> weak_set |> add_nongen_vars_in_schema' sign.csig_self |> add_nongen_vars_in_schema' sign.csig_self_row |> add_nongen_vars_in_schema_fold Meths.fold sign.csig_meths |> add_nongen_vars_in_schema_fold Vars.fold sign.csig_vars | Cty_arrow (_, ty, cty) -> add_nongen_vars_in_schema' ty weak_set |> nongen_class_type cty in nongen_class_type let nongen_class_declaration cty = List.fold_left (add_nongen_vars_in_schema Env.empty) TypeSet.empty cty.cty_params |> nongen_class_type cty.cty_type let nongen_vars_in_class_declaration cty = let result = nongen_class_declaration cty in if TypeSet.is_empty result then None else Some result (* Normalize a type before printing, saving... *) (* Cannot use mark_type because deep_occur uses it too *) let rec normalize_type_rec mark ty = if try_mark_node mark ty then begin let tm = row_of_type ty in begin if not (is_Tconstr ty) && is_constr_row ~allow_ident:false tm then match get_desc tm with (* PR#7348 *) Tconstr (Path.Pdot(m,i), tl, _abbrev) -> let i' = String.sub i 0 (String.length i - 4) in set_type_desc ty (Tconstr(Path.Pdot(m,i'), tl, ref Mnil)) | _ -> assert false else match get_desc ty with | Tvariant row -> let Row {fields = orig_fields; more; name; fixed; closed} = row_repr row in let fields = List.map (fun (l,f) -> l, match row_field_repr f with Reither(b, ty::(_::_ as tyl), m) -> let tyl' = List.fold_left (fun tyl ty -> if List.exists (fun ty' -> is_equal Env.empty false [ty] [ty']) tyl then tyl else ty::tyl) [ty] tyl in if List.length tyl' <= List.length tyl then rf_either (List.rev tyl') ~use_ext_of:f ~no_arg:b ~matched:m else f | _ -> f) orig_fields in let fields = List.sort (fun (p,_) (q,_) -> compare p q) (List.filter (fun (_,fi) -> row_field_repr fi <> Rabsent) fields) in set_type_desc ty (Tvariant (create_row ~fields ~more ~name ~fixed ~closed)) | Tobject (fi, nm) -> begin match !nm with | None -> () | Some (n, v :: l) -> if deep_occur_list ty l then (* The abbreviation may be hiding something, so remove it *) set_name nm None else begin match get_desc v with | Tvar _ | Tunivar _ -> () | Tnil -> set_type_desc ty (Tconstr (n, l, ref Mnil)) | _ -> set_name nm None end | _ -> fatal_error "Ctype.normalize_type_rec" end; let level = get_level fi in if level < lowest_level then () else let fields, row = flatten_fields fi in let fi' = build_fields level fields row in set_type_desc fi (get_desc fi') | _ -> () end; iter_type_expr (normalize_type_rec mark) ty; end let normalize_type ty = with_type_mark (fun mark -> normalize_type_rec mark ty) (*************************) (* Remove dependencies *) (*************************) (* Variables are left unchanged. Other type nodes are duplicated, with levels set to generic level. We cannot use Tsubst here, because unification may be called by expand_abbrev. *) let nondep_hash = TypeHash.create 47 let nondep_variants = TypeHash.create 17 let clear_hash () = TypeHash.clear nondep_hash; TypeHash.clear nondep_variants let rec nondep_type_rec ?(expand_private=false) env ids ty = let try_expand env t = if expand_private then try_expand_safe_opt env t else try_expand_safe env t in match get_desc ty with Tvar _ | Tunivar _ -> ty | _ -> try TypeHash.find nondep_hash ty with Not_found -> let ty' = newgenstub ~scope:(get_scope ty) in TypeHash.add nondep_hash ty ty'; match match get_desc ty with | Tconstr(p, tl, _abbrev) as desc -> begin try (* First, try keeping the same type constructor p *) match Path.find_free_opt ids p with | Some id -> raise (Nondep_cannot_erase id) | None -> Tconstr(p, List.map (nondep_type_rec env ids) tl, ref Mnil) with (Nondep_cannot_erase _) as exn -> (* If that doesn't work, try expanding abbrevs *) try Tlink (nondep_type_rec ~expand_private env ids (try_expand env (newty2 ~level:(get_level ty) desc))) (* The [Tlink] is important. The expanded type may be a variable, or may not be completely copied yet (recursive type), so one cannot just take its description. *) with Cannot_expand -> raise exn end | Tpackage pack when Path.exists_free ids pack.pack_path -> let p' = normalize_package_path env pack.pack_path in begin match Path.find_free_opt ids p' with | Some id -> raise (Nondep_cannot_erase id) | None -> let nondep_field_rec (n, ty) = (n, nondep_type_rec env ids ty) in Tpackage { pack_path = p'; pack_cstrs = List.map nondep_field_rec pack.pack_cstrs } end | Tobject (t1, name) -> Tobject (nondep_type_rec env ids t1, ref (match !name with None -> None | Some (p, tl) -> if Path.exists_free ids p then None else Some (p, List.map (nondep_type_rec env ids) tl))) | Tvariant row -> let more = row_more row in (* We must keep sharing according to the row variable *) begin try let ty2 = TypeHash.find nondep_variants more in (* This variant type has been already copied *) TypeHash.add nondep_hash ty ty2; Tlink ty2 with Not_found -> (* Register new type first for recursion *) TypeHash.add nondep_variants more ty'; let static = static_row row in let more' = if static then newgenty Tnil else nondep_type_rec env ids more in (* Return a new copy *) let row = copy_row (nondep_type_rec env ids) true row true more' in match row_name row with Some (p, _tl) when Path.exists_free ids p -> Tvariant (set_row_name row None) | _ -> Tvariant row end | desc -> copy_type_desc (nondep_type_rec env ids) desc with | desc -> Transient_expr.set_stub_desc ty' desc; ty' | exception e -> TypeHash.remove nondep_hash ty; raise e let nondep_type env id ty = try let ty' = nondep_type_rec env id ty in clear_hash (); ty' with Nondep_cannot_erase _ as exn -> clear_hash (); raise exn let () = nondep_type' := nondep_type (* Preserve sharing inside type declarations. *) let nondep_type_decl env mid is_covariant decl = try let params = List.map (nondep_type_rec env mid) decl.type_params in let tk = try map_kind (nondep_type_rec env mid) decl.type_kind with Nondep_cannot_erase _ when is_covariant -> Type_abstract Definition and tm, priv = match decl.type_manifest with | None -> None, decl.type_private | Some ty -> try Some (nondep_type_rec env mid ty), decl.type_private with Nondep_cannot_erase _ when is_covariant -> clear_hash (); try Some (nondep_type_rec ~expand_private:true env mid ty), Private with Nondep_cannot_erase _ -> None, decl.type_private in clear_hash (); let priv = match tm with | Some ty when Btype.has_constr_row ty -> Private | _ -> priv in { type_params = params; type_arity = decl.type_arity; type_kind = tk; type_manifest = tm; type_private = priv; type_variance = decl.type_variance; type_separability = decl.type_separability; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = decl.type_loc; type_attributes = decl.type_attributes; type_immediate = decl.type_immediate; type_unboxed_default = decl.type_unboxed_default; type_uid = decl.type_uid; } with Nondep_cannot_erase _ as exn -> clear_hash (); raise exn (* Preserve sharing inside extension constructors. *) let nondep_extension_constructor env ids ext = try let type_path, type_params = match Path.find_free_opt ids ext.ext_type_path with | Some id -> begin let ty = newgenty (Tconstr(ext.ext_type_path, ext.ext_type_params, ref Mnil)) in let ty' = nondep_type_rec env ids ty in match get_desc ty' with Tconstr(p, tl, _) -> p, tl | _ -> raise (Nondep_cannot_erase id) end | None -> let type_params = List.map (nondep_type_rec env ids) ext.ext_type_params in ext.ext_type_path, type_params in let args = map_type_expr_cstr_args (nondep_type_rec env ids) ext.ext_args in let ret_type = Option.map (nondep_type_rec env ids) ext.ext_ret_type in clear_hash (); { ext_type_path = type_path; ext_type_params = type_params; ext_args = args; ext_ret_type = ret_type; ext_private = ext.ext_private; ext_attributes = ext.ext_attributes; ext_loc = ext.ext_loc; ext_uid = ext.ext_uid; } with Nondep_cannot_erase _ as exn -> clear_hash (); raise exn (* Preserve sharing inside class types. *) let nondep_class_signature env id sign = { csig_self = nondep_type_rec env id sign.csig_self; csig_self_row = nondep_type_rec env id sign.csig_self_row; csig_vars = Vars.map (function (m, v, t) -> (m, v, nondep_type_rec env id t)) sign.csig_vars; csig_meths = Meths.map (function (p, v, t) -> (p, v, nondep_type_rec env id t)) sign.csig_meths } let rec nondep_class_type env ids = function Cty_constr (p, _, cty) when Path.exists_free ids p -> nondep_class_type env ids cty | Cty_constr (p, tyl, cty) -> Cty_constr (p, List.map (nondep_type_rec env ids) tyl, nondep_class_type env ids cty) | Cty_signature sign -> Cty_signature (nondep_class_signature env ids sign) | Cty_arrow (l, ty, cty) -> Cty_arrow (l, nondep_type_rec env ids ty, nondep_class_type env ids cty) let nondep_class_declaration env ids decl = assert (not (Path.exists_free ids decl.cty_path)); let decl = { cty_params = List.map (nondep_type_rec env ids) decl.cty_params; cty_variance = decl.cty_variance; cty_type = nondep_class_type env ids decl.cty_type; cty_path = decl.cty_path; cty_new = begin match decl.cty_new with None -> None | Some ty -> Some (nondep_type_rec env ids ty) end; cty_loc = decl.cty_loc; cty_attributes = decl.cty_attributes; cty_uid = decl.cty_uid; } in clear_hash (); decl let nondep_cltype_declaration env ids decl = assert (not (Path.exists_free ids decl.clty_path)); let decl = { clty_params = List.map (nondep_type_rec env ids) decl.clty_params; clty_variance = decl.clty_variance; clty_type = nondep_class_type env ids decl.clty_type; clty_path = decl.clty_path; clty_hash_type = nondep_type_decl env ids false decl.clty_hash_type ; clty_loc = decl.clty_loc; clty_attributes = decl.clty_attributes; clty_uid = decl.clty_uid; } in clear_hash (); decl (* collapse conjunctive types in class parameters *) let rec collapse_conj env visited ty = let id = get_id ty in if List.memq id visited then () else let visited = id :: visited in match get_desc ty with Tvariant row -> List.iter (fun (_l,fi) -> match row_field_repr fi with Reither (_c, t1::(_::_ as tl), _m) -> List.iter (unify env t1) tl | _ -> ()) (row_fields row); iter_row (collapse_conj env visited) row | _ -> iter_type_expr (collapse_conj env visited) ty let collapse_conj_params env params = List.iter (collapse_conj env []) params let same_constr env t1 t2 = let t1 = expand_head env t1 in let t2 = expand_head env t2 in match get_desc t1, get_desc t2 with | Tconstr (p1, _, _), Tconstr (p2, _, _) -> Path.same p1 p2 | _ -> false let () = Env.same_constr := same_constr let immediacy env typ = match get_desc typ with | Tconstr(p, _args, _abbrev) -> begin try let type_decl = Env.find_type p env in type_decl.type_immediate with Not_found -> Type_immediacy.Unknown (* This can happen due to e.g. missing -I options, causing some .cmi files to be unavailable. Maybe we should emit a warning. *) end | Tvariant row -> (* if all labels are devoid of arguments, not a pointer *) if not (row_closed row) || List.exists (fun (_, f) -> match row_field_repr f with | Rpresent (Some _) | Reither (false, _, _) -> true | _ -> false) (row_fields row) then Type_immediacy.Unknown else Type_immediacy.Always | _ -> Type_immediacy.Unknown