(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Compute a spanning tree representation of types *) open Misc open Ctype open Longident open Path open Asttypes open Types open Btype open Outcometree module String = Misc.Stdlib.String module Sig_component_kind = Shape.Sig_component_kind module Style = Misc.Style (* Print a long identifier *) module Fmt = Format_doc open Format_doc (* Print an identifier avoiding name collisions *) module Out_name = struct let create x = { printed_name = x } let print x = x.printed_name end (** Some identifiers may require hiding when printing *) type bound_ident = { hide:bool; ident:Ident.t } (* printing environment for path shortening and naming *) let printing_env = ref Env.empty (* When printing, it is important to only observe the current printing environment, without reading any new cmi present on the file system *) let in_printing_env f = Env.without_cmis f !printing_env type namespace = Sig_component_kind.t = | Value | Type | Constructor | Label | Module | Module_type | Extension_constructor | Class | Class_type module Namespace = struct let id = function | Type -> 0 | Module -> 1 | Module_type -> 2 | Class -> 3 | Class_type -> 4 | Extension_constructor | Value | Constructor | Label -> 5 (* we do not handle those component *) let size = 1 + id Value let pp ppf x = Fmt.pp_print_string ppf (Shape.Sig_component_kind.to_string x) (** The two functions below should never access the filesystem, and thus use {!in_printing_env} rather than directly accessing the printing environment *) let lookup = let to_lookup f lid = fst @@ in_printing_env (f (Lident lid)) in function | Some Type -> to_lookup Env.find_type_by_name | Some Module -> to_lookup Env.find_module_by_name | Some Module_type -> to_lookup Env.find_modtype_by_name | Some Class -> to_lookup Env.find_class_by_name | Some Class_type -> to_lookup Env.find_cltype_by_name | None | Some(Value|Extension_constructor|Constructor|Label) -> fun _ -> raise Not_found let location namespace id = let path = Path.Pident id in try Some ( match namespace with | Some Type -> (in_printing_env @@ Env.find_type path).type_loc | Some Module -> (in_printing_env @@ Env.find_module path).md_loc | Some Module_type -> (in_printing_env @@ Env.find_modtype path).mtd_loc | Some Class -> (in_printing_env @@ Env.find_class path).cty_loc | Some Class_type -> (in_printing_env @@ Env.find_cltype path).clty_loc | Some (Extension_constructor|Value|Constructor|Label) | None -> Location.none ) with Not_found -> None let best_class_namespace = function | Papply _ | Pdot _ -> Some Module | Pextra_ty _ -> assert false (* Only in type path *) | Pident c -> match location (Some Class) c with | Some _ -> Some Class | None -> Some Class_type end (** {2 Ident conflicts printing} Ident conflicts arise when multiple {!Ident.t}s are attributed the same name. The following module stores the global conflict references and provides the printing functions for explaining the source of the conflicts. *) module Ident_conflicts = struct module M = String.Map type explanation = { kind: namespace; name:string; root_name:string; location:Location.t} let explanations = ref M.empty let add namespace name id = match Namespace.location (Some namespace) id with | None -> () | Some location -> let explanation = { kind = namespace; location; name; root_name=Ident.name id} in explanations := M.add name explanation !explanations let collect_explanation namespace id ~name = let root_name = Ident.name id in (* if [name] is of the form "root_name/%d", we register both [id] and the identifier in scope for [root_name]. *) if root_name <> name && not (M.mem name !explanations) then begin add namespace name id; if not (M.mem root_name !explanations) then (* lookup the identifier in scope with name [root_name] and add it too *) match Namespace.lookup (Some namespace) root_name with | Pident root_id -> add namespace root_name root_id | exception Not_found | _ -> () end let pp_explanation ppf r= Fmt.fprintf ppf "@[%a:@,Definition of %s %a@]" Location.Doc.loc r.location (Sig_component_kind.to_string r.kind) Style.inline_code r.name let print_located_explanations ppf l = Fmt.fprintf ppf "@[%a@]" (Fmt.pp_print_list pp_explanation) l let reset () = explanations := M.empty let list_explanations () = let c = !explanations in reset (); c |> M.bindings |> List.map snd |> List.sort Stdlib.compare let print_toplevel_hint ppf l = let conj ppf () = Fmt.fprintf ppf " and@ " in let pp_namespace_plural ppf n = Fmt.fprintf ppf "%as" Namespace.pp n in let root_names = List.map (fun r -> r.kind, r.root_name) l in let unique_root_names = List.sort_uniq Stdlib.compare root_names in let submsgs = Array.make Namespace.size [] in let () = List.iter (fun (n,_ as x) -> submsgs.(Namespace.id n) <- x :: submsgs.(Namespace.id n) ) unique_root_names in let pp_submsg ppf names = match names with | [] -> () | [namespace, a] -> Fmt.fprintf ppf "@,\ @[<2>@{Hint@}: The %a %a has been defined multiple times@ \ in@ this@ toplevel@ session.@ \ Some toplevel values still refer to@ old@ versions@ of@ this@ %a.\ @ Did you try to redefine them?@]" Namespace.pp namespace Style.inline_code a Namespace.pp namespace | (namespace, _) :: _ :: _ -> Fmt.fprintf ppf "@,\ @[<2>@{Hint@}: The %a %a have been defined multiple times@ \ in@ this@ toplevel@ session.@ \ Some toplevel values still refer to@ old@ versions@ of@ those@ %a.\ @ Did you try to redefine them?@]" pp_namespace_plural namespace Fmt.(pp_print_list ~pp_sep:conj Style.inline_code) (List.map snd names) pp_namespace_plural namespace in Array.iter (pp_submsg ppf) submsgs let err_msg () = let ltop, l = (* isolate toplevel locations, since they are too imprecise *) let from_toplevel a = a.location.Location.loc_start.Lexing.pos_fname = "//toplevel//" in List.partition from_toplevel (list_explanations ()) in match l, ltop with | [], [] -> None | _ -> Some (Fmt.doc_printf "%a%a" print_located_explanations l print_toplevel_hint ltop ) let err_print ppf = Option.iter Fmt.(fprintf ppf "@,%a" pp_doc) (err_msg ()) let exists () = M.cardinal !explanations >0 end module Ident_names = struct module M = String.Map module S = String.Set let enabled = ref true let enable b = enabled := b (* Names bound in recursive definitions should be considered as bound in the environment when printing identifiers but not when trying to find shortest path. For instance, if we define [{ module Avoid__me = struct type t = A end type t = X type u = [` A of t * t ] module M = struct type t = A of [ u | `B ] type r = Avoid__me.t end }] It is is important that in the definition of [t] that the outer type [t] is printed as [t/2] reserving the name [t] to the type being defined in the current recursive definition. Contrarily, in the definition of [r], one should not shorten the path [Avoid__me.t] to [r] until the end of the definition of [r]. The [bound_in_recursion] bridges the gap between those two slightly different notions of printing environment. *) let bound_in_recursion = ref M.empty (* When dealing with functor arguments, identity becomes fuzzy because the same syntactic argument may be represented by different identifiers during the error processing, we are thus disabling disambiguation on the argument name *) let fuzzy = ref S.empty let with_fuzzy id f = protect_refs [ R(fuzzy, S.add (Ident.name id) !fuzzy) ] f let fuzzy_id namespace id = namespace = Module && S.mem (Ident.name id) !fuzzy let with_hidden ids f = let update m id = M.add (Ident.name id.ident) id.ident m in let updated = List.fold_left update !bound_in_recursion ids in protect_refs [ R(bound_in_recursion, updated )] f let human_id id index = (* The identifier with index [k] is the (k+1)-th most recent identifier in the printing environment. We print them as [name/(k+1)] except for [k=0] which is printed as [name] rather than [name/1]. *) if index = 0 then Ident.name id else let ordinal = index + 1 in String.concat "/" [Ident.name id; string_of_int ordinal] let indexed_name namespace id = let find namespace id env = match namespace with | Type -> Env.find_type_index id env | Module -> Env.find_module_index id env | Module_type -> Env.find_modtype_index id env | Class -> Env.find_class_index id env | Class_type-> Env.find_cltype_index id env | Value | Extension_constructor | Constructor | Label -> None in let index = match M.find_opt (Ident.name id) !bound_in_recursion with | Some rec_bound_id -> (* the identifier name appears in the current group of recursive definition *) if Ident.same rec_bound_id id then Some 0 else (* the current recursive definition shadows one more time the previously existing identifier with the same name *) Option.map succ (in_printing_env (find namespace id)) | None -> in_printing_env (find namespace id) in let index = (* If [index] is [None] at this point, it might indicate that the identifier id is not defined in the environment, while there are other identifiers in scope that share the same name. Currently, this kind of partially incoherent environment happens within functor error messages where the left and right hand side have a different views of the environment at the source level. Printing the source-level by using a default index of `0` seems like a reasonable compromise in this situation however.*) Option.value index ~default:0 in human_id id index let ident_name namespace id = match namespace, !enabled with | None, _ | _, false -> Out_name.create (Ident.name id) | Some namespace, true -> if fuzzy_id namespace id then Out_name.create (Ident.name id) else let name = indexed_name namespace id in Ident_conflicts.collect_explanation namespace id ~name; Out_name.create name end let ident_name = Ident_names.ident_name (* Print a path *) let ident_stdlib = Ident.create_persistent "Stdlib" let non_shadowed_stdlib namespace = function | Pdot(Pident id, s) as path -> Ident.same id ident_stdlib && (match Namespace.lookup namespace s with | path' -> Path.same path path' | exception Not_found -> true) | _ -> false let find_double_underscore s = let len = String.length s in let rec loop i = if i + 1 >= len then None else if s.[i] = '_' && s.[i + 1] = '_' then Some i else loop (i + 1) in loop 0 let rec module_path_is_an_alias_of env path ~alias_of = match Env.find_module path env with | { md_type = Mty_alias path'; _ } -> Path.same path' alias_of || module_path_is_an_alias_of env path' ~alias_of | _ -> false | exception Not_found -> false (* Simple heuristic to print Foo__bar.* as Foo.Bar.* when Foo.Bar is an alias for Foo__bar. This pattern is used by the stdlib. *) let rec rewrite_double_underscore_paths env p = match p with | Pdot (p, s) -> Pdot (rewrite_double_underscore_paths env p, s) | Papply (a, b) -> Papply (rewrite_double_underscore_paths env a, rewrite_double_underscore_paths env b) | Pextra_ty (p, extra) -> Pextra_ty (rewrite_double_underscore_paths env p, extra) | Pident id -> let name = Ident.name id in match find_double_underscore name with | None -> p | Some i -> let better_lid = Ldot (Location.mknoloc (Lident (String.sub name 0 i)), (Location.mknoloc (Unit_info.modulize (String.sub name (i + 2) (String.length name - i - 2))))) in match Env.find_module_by_name better_lid env with | exception Not_found -> p | p', _ -> if module_path_is_an_alias_of env p' ~alias_of:p then p' else p let rewrite_double_underscore_paths env p = if env == Env.empty then p else rewrite_double_underscore_paths env p let rec tree_of_path ?(disambiguation=true) namespace p = let tree_of_path namespace p = tree_of_path ~disambiguation namespace p in let namespace = if disambiguation then namespace else None in match p with | Pident id -> Oide_ident (ident_name namespace id) | Pdot(_, s) as path when non_shadowed_stdlib namespace path -> Oide_ident (Out_name.create s) | Pdot(p, s) -> Oide_dot (tree_of_path (Some Module) p, s) | Papply(p1, p2) -> let t1 = tree_of_path (Some Module) p1 in let t2 = tree_of_path (Some Module) p2 in Oide_apply (t1, t2) | Pextra_ty (p, extra) -> begin (* inline record types are syntactically prevented from escaping their binding scope, and are never shown to users. *) match extra with Pcstr_ty s -> Oide_dot (tree_of_path (Some Type) p, s) | Pext_ty -> tree_of_path None p end let tree_of_path ?disambiguation namespace p = tree_of_path ?disambiguation namespace (rewrite_double_underscore_paths !printing_env p) (* Print a recursive annotation *) let tree_of_rec = function | Trec_not -> Orec_not | Trec_first -> Orec_first | Trec_next -> Orec_next (* Normalize paths *) type param_subst = Id | Nth of int | Map of int list let is_nth = function Nth _ -> true | _ -> false let compose l1 = function | Id -> Map l1 | Map l2 -> Map (List.map (List.nth l1) l2) | Nth n -> Nth (List.nth l1 n) let apply_subst s1 tyl = if tyl = [] then [] (* cf. PR#7543: Typemod.type_package doesn't respect type constructor arity *) else match s1 with Nth n1 -> [List.nth tyl n1] | Map l1 -> List.map (List.nth tyl) l1 | Id -> tyl type best_path = Paths of Path.t list | Best of Path.t (** Short-paths cache: the five mutable variables below implement a one-slot cache for short-paths *) let printing_old = ref Env.empty let printing_pers = ref String.Set.empty (** {!printing_old} and {!printing_pers} are the keys of the one-slot cache *) let printing_depth = ref 0 let printing_cont = ref ([] : Env.iter_cont list) let printing_map = ref Path.Map.empty (** - {!printing_map} is the main value stored in the cache. Note that it is evaluated lazily and its value is updated during printing. - {!printing_dep} is the current exploration depth of the environment, it is used to determine whenever the {!printing_map} should be evaluated further before completing a request. - {!printing_cont} is the list of continuations needed to evaluate the {!printing_map} one level further (see also {!Env.run_iter_cont}) *) let rec index l x = match l with [] -> raise Not_found | a :: l -> if eq_type x a then 0 else 1 + index l x let rec uniq = function [] -> true | a :: l -> not (List.memq (a : int) l) && uniq l let rec normalize_type_path ?(cache=false) env p = try let (params, ty, _) = Env.find_type_expansion p env in match get_desc ty with Tconstr (p1, tyl, _) -> if List.length params = List.length tyl && List.for_all2 eq_type params tyl then normalize_type_path ~cache env p1 else if cache || List.length params <= List.length tyl || not (uniq (List.map get_id tyl)) then (p, Id) else let l1 = List.map (index params) tyl in let (p2, s2) = normalize_type_path ~cache env p1 in (p2, compose l1 s2) | _ -> (p, Nth (index params ty)) with Not_found -> (Env.normalize_type_path None env p, Id) let penalty s = if s <> "" && s.[0] = '_' then 10 else match find_double_underscore s with | None -> 1 | Some _ -> 10 let rec path_size = function Pident id -> penalty (Ident.name id), -Ident.scope id | Pdot (p, _) | Pextra_ty (p, Pcstr_ty _) -> let (l, b) = path_size p in (1+l, b) | Papply (p1, p2) -> let (l, b) = path_size p1 in (l + fst (path_size p2), b) | Pextra_ty (p, _) -> path_size p let same_printing_env env = let used_pers = Env.used_persistent () in Env.same_types !printing_old env && String.Set.equal !printing_pers used_pers let set_printing_env env = printing_env := env; if !Clflags.real_paths || !printing_env == Env.empty || same_printing_env env then () else begin (* printf "Reset printing_map@."; *) printing_old := env; printing_pers := Env.used_persistent (); printing_map := Path.Map.empty; printing_depth := 0; (* printf "Recompute printing_map.@."; *) let cont = Env.iter_types (fun p (p', _decl) -> let (p1, s1) = normalize_type_path env p' ~cache:true in (* Format.eprintf "%a -> %a = %a@." path p path p' path p1 *) if s1 = Id then try let r = Path.Map.find p1 !printing_map in match !r with Paths l -> r := Paths (p :: l) | Best p' -> r := Paths [p; p'] (* assert false *) with Not_found -> printing_map := Path.Map.add p1 (ref (Paths [p])) !printing_map) env in printing_cont := [cont]; end let wrap_printing_env env f = set_printing_env env; try_finally f ~always:(fun () -> set_printing_env Env.empty) let wrap_printing_env ~error env f = if error then Env.without_cmis (wrap_printing_env env) f else wrap_printing_env env f let rec lid_of_path = function Path.Pident id -> Longident.Lident (Ident.name id) | Path.Pdot (p1, s) | Path.Pextra_ty (p1, Pcstr_ty s) -> Longident.Ldot (Location.mknoloc (lid_of_path p1), Location.mknoloc s) | Path.Papply (p1, p2) -> Longident.Lapply (Location.mknoloc (lid_of_path p1), Location.mknoloc (lid_of_path p2)) | Path.Pextra_ty (p, Pext_ty) -> lid_of_path p let is_unambiguous path env = let l = Env.find_shadowed_types path env in List.exists (Path.same path) l || (* concrete paths are ok *) match l with [] -> true | p :: rem -> (* allow also coherent paths: *) let normalize p = fst (normalize_type_path ~cache:true env p) in let p' = normalize p in List.for_all (fun p -> Path.same (normalize p) p') rem || (* also allow repeatedly defining and opening (for toplevel) *) let id = lid_of_path p in List.for_all (fun p -> Longident.same (lid_of_path p) id) rem && Path.same p (fst (Env.find_type_by_name id env)) let rec get_best_path r = match !r with Best p' -> p' | Paths [] -> raise Not_found | Paths l -> r := Paths []; List.iter (fun p -> (* Format.eprintf "evaluating %a@." path p; *) match !r with Best p' when path_size p >= path_size p' -> () | _ -> if is_unambiguous p !printing_env then r := Best p) (* else Format.eprintf "%a ignored as ambiguous@." path p *) l; get_best_path r let best_type_path p = if !printing_env == Env.empty then (p, Id) else if !Clflags.real_paths then (p, Id) else let (p', s) = normalize_type_path !printing_env p in let get_path () = get_best_path (Path.Map.find p' !printing_map) in while !printing_cont <> [] && try fst (path_size (get_path ())) > !printing_depth with Not_found -> true do printing_cont := List.map snd (Env.run_iter_cont !printing_cont); incr printing_depth; done; let p'' = try get_path () with Not_found -> p' in (* Format.eprintf "%a = %a -> %a@." path p path p' path p''; *) (p'', s) (* When building a tree for a best type path, we should not disambiguate identifiers whenever the short-path algorithm detected a better path than the original one.*) let tree_of_best_type_path p p' = if Path.same p p' then tree_of_path (Some Type) p' else tree_of_path ~disambiguation:false None p' (* Print a type expression *) let proxy ty = Transient_expr.repr (proxy ty) (* When printing a type scheme, we print weak names. When printing a plain type, we do not. This type controls that behavior *) type type_or_scheme = Type | Type_scheme let is_non_gen mode ty = match mode with | Type_scheme -> is_Tvar ty && get_level ty <> generic_level | Type -> false let nameable_row row = row_name row <> None && List.for_all (fun (_, f) -> match row_field_repr f with | Reither(c, l, _) -> row_closed row && if c then l = [] else List.length l = 1 | _ -> true) (row_fields row) (* This specialized version of [Btype.iter_type_expr] normalizes and short-circuits the traversal of the [type_expr], so that it covers only the subterms that would be printed by the type printer. *) let printer_iter_type_expr f ty = match get_desc ty with | Tconstr(p, tyl, _) -> let (_p', s) = best_type_path p in List.iter f (apply_subst s tyl) | Tvariant row -> begin match row_name row with | Some(_p, tyl) when nameable_row row -> List.iter f tyl | _ -> iter_row f row end | Tobject (fi, nm) -> begin match !nm with | None -> let fields, _ = flatten_fields fi in List.iter (fun (_, kind, ty) -> if field_kind_repr kind = Fpublic then f ty) fields | Some (_, l) -> List.iter f (List.tl l) end | Tfield(_, kind, ty1, ty2) -> if field_kind_repr kind = Fpublic then f ty1; f ty2 | _ -> Btype.iter_type_expr f ty let quoted_ident ppf x = Style.as_inline_code !Oprint.out_ident ppf x module Internal_names : sig val reset : unit -> unit val add : Path.t -> unit val print_explanations : Env.t -> Fmt.formatter -> unit end = struct let names = ref Ident.Set.empty let reset () = names := Ident.Set.empty let add p = match p with | Pident id -> let name = Ident.name id in if String.length name > 0 && name.[0] = '$' then begin names := Ident.Set.add id !names end | Pdot _ | Papply _ | Pextra_ty _ -> () let print_explanations env ppf = let constrs = Ident.Set.fold (fun id acc -> let p = Pident id in match Env.find_type p env with | exception Not_found -> acc | decl -> match type_origin decl with | Existential constr -> let prev = String.Map.find_opt constr acc in let prev = Option.value ~default:[] prev in String.Map.add constr (tree_of_path None p :: prev) acc | Definition | Rec_check_regularity -> acc) !names String.Map.empty in String.Map.iter (fun constr out_idents -> match out_idents with | [] -> () | [out_ident] -> fprintf ppf "@ @[<2>@{Hint@}:@ %a@ is an existential type@ \ bound by the constructor@ %a.@]" quoted_ident out_ident Style.inline_code constr | out_ident :: out_idents -> fprintf ppf "@ @[<2>@{Hint@}:@ %a@ and %a@ are existential types@ \ bound by the constructor@ %a.@]" (Fmt.pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf ",@ ") quoted_ident) (List.rev out_idents) quoted_ident out_ident Style.inline_code constr) constrs end module Variable_names : sig val reset_names : unit -> unit val add_subst : (type_expr * type_expr) list -> unit val new_name : unit -> string val new_var_name : non_gen:bool -> type_expr -> unit -> string val name_of_type : (unit -> string) -> transient_expr -> string val check_name_of_type : non_gen:bool -> transient_expr -> unit val reserve: type_expr -> unit val remove_names : transient_expr list -> unit val with_local_names : (unit -> 'a) -> 'a (* Refresh the weak variable map in the toplevel; for [print_items], which is itself for the toplevel *) val refresh_weak : unit -> unit end = struct (* We map from types to names, but not directly; we also store a substitution, which maps from types to types. The lookup process is "type -> apply substitution -> find name". The substitution is presumed to be one-shot. *) let names = ref ([] : (transient_expr * string) list) let name_subst = ref ([] : (transient_expr * transient_expr) list) let name_counter = ref 0 let named_vars = ref ([] : string list) let visited_for_named_vars = ref ([] : transient_expr list) let weak_counter = ref 1 let weak_var_map = ref TypeMap.empty let named_weak_vars = ref String.Set.empty let reset_names () = names := []; name_subst := []; name_counter := 0; named_vars := []; visited_for_named_vars := [] let add_named_var tty = match tty.desc with Tvar (Some name) | Tunivar (Some name) -> if List.mem name !named_vars then () else named_vars := name :: !named_vars | _ -> () let rec add_named_vars ty = let tty = Transient_expr.repr ty in let px = proxy ty in if not (List.memq px !visited_for_named_vars) then begin visited_for_named_vars := px :: !visited_for_named_vars; match tty.desc with | Tvar _ | Tunivar _ -> add_named_var tty | _ -> printer_iter_type_expr add_named_vars ty end let substitute ty = match List.assq ty !name_subst with | ty' -> ty' | exception Not_found -> ty let add_subst subst = name_subst := List.map (fun (t1,t2) -> Transient_expr.repr t1, Transient_expr.repr t2) subst @ !name_subst let name_is_already_used name = List.mem name !named_vars || List.exists (fun (_, name') -> name = name') !names || String.Set.mem name !named_weak_vars let rec new_name () = let name = Misc.letter_of_int !name_counter in incr name_counter; if name_is_already_used name then new_name () else name let rec new_weak_name ty () = let name = "weak" ^ Int.to_string !weak_counter in incr weak_counter; if name_is_already_used name then new_weak_name ty () else begin named_weak_vars := String.Set.add name !named_weak_vars; weak_var_map := TypeMap.add ty name !weak_var_map; name end let new_var_name ~non_gen ty () = if non_gen then new_weak_name ty () else new_name () let name_of_type name_generator t = (* We've already been through repr at this stage, so t is our representative of the union-find class. *) let t = substitute t in try List.assq t !names with Not_found -> try TransientTypeMap.find t !weak_var_map with Not_found -> let name = match t.desc with Tvar (Some name) | Tunivar (Some name) -> (* Some part of the type we've already printed has assigned another * unification variable to that name. We want to keep the name, so * try adding a number until we find a name that's not taken. *) let available name = List.for_all (fun (_, name') -> name <> name') !names in if available name then name else let suffixed i = name ^ Int.to_string i in let i = Misc.find_first_mono (fun i -> available (suffixed i)) in suffixed i | _ -> (* No name available, create a new one *) name_generator () in (* Exception for type declarations *) if name <> "_" then names := (t, name) :: !names; name let check_name_of_type ~non_gen px = let name_gen = new_var_name ~non_gen (Transient_expr.type_expr px) in ignore(name_of_type name_gen px) let remove_names tyl = let tyl = List.map substitute tyl in names := List.filter (fun (ty,_) -> not (List.memq ty tyl)) !names let with_local_names f = let old_names = !names in let old_subst = !name_subst in names := []; name_subst := []; try_finally ~always:(fun () -> names := old_names; name_subst := old_subst) f let refresh_weak () = let refresh t name (m,s) = if is_non_gen Type_scheme t then begin TypeMap.add t name m, String.Set.add name s end else m, s in let m, s = TypeMap.fold refresh !weak_var_map (TypeMap.empty ,String.Set.empty) in named_weak_vars := s; weak_var_map := m let reserve ty = normalize_type ty; add_named_vars ty end module Aliases = struct let visited_objects = ref ([] : transient_expr list) let aliased = ref ([] : transient_expr list) let delayed = ref ([] : transient_expr list) let printed_aliases = ref ([] : transient_expr list) (* [printed_aliases] is a subset of [aliased] that records only those aliased types that have actually been printed; this allows us to avoid naming loops that the user will never see. *) let is_delayed t = List.memq t !delayed let remove_delay t = if is_delayed t then delayed := List.filter ((!=) t) !delayed let add_delayed t = if not (is_delayed t) then delayed := t :: !delayed let is_aliased_proxy px = List.memq px !aliased let is_printed_proxy px = List.memq px !printed_aliases let add_proxy px = if not (is_aliased_proxy px) then aliased := px :: !aliased let add ty = add_proxy (proxy ty) let add_printed_proxy ~non_gen px = Variable_names.check_name_of_type ~non_gen px; printed_aliases := px :: !printed_aliases let mark_as_printed px = if is_aliased_proxy px then (add_printed_proxy ~non_gen:false) px let add_printed ty = add_printed_proxy (proxy ty) let aliasable ty = match get_desc ty with Tvar _ | Tunivar _ | Tpoly _ -> false | Tconstr (p, _, _) -> not (is_nth (snd (best_type_path p))) | _ -> true let should_visit_object ty = match get_desc ty with | Tvariant row -> not (static_row row) | Tobject _ -> opened_object ty | _ -> false let rec mark_loops_rec visited ty = let px = proxy ty in if List.memq px visited && aliasable ty then add_proxy px else let tty = Transient_expr.repr ty in let visited = px :: visited in match tty.desc with | Tvariant _ | Tobject _ -> if List.memq px !visited_objects then add_proxy px else begin if should_visit_object ty then visited_objects := px :: !visited_objects; printer_iter_type_expr (mark_loops_rec visited) ty end | Tpoly(ty, tyl) -> List.iter add tyl; mark_loops_rec visited ty | _ -> printer_iter_type_expr (mark_loops_rec visited) ty let mark_loops ty = mark_loops_rec [] ty let reset () = visited_objects := []; aliased := []; delayed := []; printed_aliases := [] end let prepare_type ty = Variable_names.reserve ty; Aliases.mark_loops ty let reset_except_conflicts () = Variable_names.reset_names (); Aliases.reset (); Internal_names.reset () let reset () = Ident_conflicts.reset (); reset_except_conflicts () let prepare_for_printing tyl = reset_except_conflicts (); List.iter prepare_type tyl let add_type_to_preparation = prepare_type (* Disabled in classic mode when printing an unification error *) let print_labels = ref true let with_labels b f = Misc.protect_refs [R (print_labels,b)] f let alias_nongen_row mode px ty = match get_desc ty with | Tvariant _ | Tobject _ -> if is_non_gen mode (Transient_expr.type_expr px) then Aliases.add_proxy px | _ -> () let rec tree_of_typexp mode ty = let px = proxy ty in if Aliases.is_printed_proxy px && not (Aliases.is_delayed px) then let non_gen = is_non_gen mode (Transient_expr.type_expr px) in let name = Variable_names.(name_of_type (new_var_name ~non_gen ty)) px in Otyp_var (non_gen, name) else let pr_typ () = let tty = Transient_expr.repr ty in match tty.desc with | Tvar _ -> let non_gen = is_non_gen mode ty in let name_gen = Variable_names.new_var_name ~non_gen ty in Otyp_var (non_gen, Variable_names.name_of_type name_gen tty) | Tarrow(l, ty1, ty2, _) -> let lab = if !print_labels || is_optional l then l else Nolabel in let t1 = if is_optional l then match get_desc ty1 with | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> tree_of_typexp mode ty | _ -> Otyp_stuff "" else tree_of_typexp mode ty1 in Otyp_arrow (lab, t1, tree_of_typexp mode ty2) | Ttuple tyl -> Otyp_tuple (tree_of_labeled_typlist mode tyl) | Tconstr(p, tyl, _abbrev) -> let p', s = best_type_path p in let tyl' = apply_subst s tyl in if is_nth s && not (tyl'=[]) then tree_of_typexp mode (List.hd tyl') else begin Internal_names.add p'; Otyp_constr (tree_of_best_type_path p p', tree_of_typlist mode tyl') end | Tvariant row -> let Row {fields; name; closed; _} = row_repr row in let fields = if closed then List.filter (fun (_, f) -> row_field_repr f <> Rabsent) fields else fields in let present = List.filter (fun (_, f) -> match row_field_repr f with | Rpresent _ -> true | _ -> false) fields in let all_present = List.length present = List.length fields in begin match name with | Some(p, tyl) when nameable_row row -> let (p', s) = best_type_path p in let id = tree_of_best_type_path p p' in let args = tree_of_typlist mode (apply_subst s tyl) in let out_variant = if is_nth s then List.hd args else Otyp_constr (id, args) in if closed && all_present then out_variant else let tags = if all_present then None else Some (List.map fst present) in Otyp_variant (Ovar_typ out_variant, closed, tags) | _ -> let fields = List.map (tree_of_row_field mode) fields in let tags = if all_present then None else Some (List.map fst present) in Otyp_variant (Ovar_fields fields, closed, tags) end | Tobject (fi, nm) -> tree_of_typobject mode fi !nm | Tnil | Tfield _ -> tree_of_typobject mode ty None | Tsubst _ -> (* This case should only happen when debugging the compiler *) Otyp_stuff "" | Tlink _ -> fatal_error "Out_type.tree_of_typexp" | Tpoly (ty, []) -> tree_of_typexp mode ty | Tpoly (ty, tyl) -> (*let print_names () = List.iter (fun (_, name) -> prerr_string (name ^ " ")) !names; prerr_string "; " in *) if tyl = [] then tree_of_typexp mode ty else begin let tyl = List.map Transient_expr.repr tyl in let old_delayed = !Aliases.delayed in (* Make the names delayed, so that the real type is printed once when used as proxy *) List.iter Aliases.add_delayed tyl; let tl = List.map Variable_names.(name_of_type new_name) tyl in let tr = Otyp_poly (tl, tree_of_typexp mode ty) in (* Forget names when we leave scope *) Variable_names.remove_names tyl; Aliases.delayed := old_delayed; tr end | Tunivar _ -> Otyp_var (false, Variable_names.(name_of_type new_name) tty) | Tpackage pack -> let pack = tree_of_package mode pack in Otyp_module pack in Aliases.remove_delay px; alias_nongen_row mode px ty; if Aliases.(is_aliased_proxy px && aliasable ty) then begin let non_gen = is_non_gen mode (Transient_expr.type_expr px) in Aliases.add_printed_proxy ~non_gen px; (* add_printed_alias chose a name, thus the name generator doesn't matter.*) let alias = Variable_names.(name_of_type (new_var_name ~non_gen ty)) px in Otyp_alias {non_gen; aliased = pr_typ (); alias } end else pr_typ () and tree_of_row_field mode (l, f) = match row_field_repr f with | Rpresent None | Reither(true, [], _) -> (l, false, []) | Rpresent(Some ty) -> (l, false, [tree_of_typexp mode ty]) | Reither(c, tyl, _) -> if c (* contradiction: constant constructor with an argument *) then (l, true, tree_of_typlist mode tyl) else (l, false, tree_of_typlist mode tyl) | Rabsent -> (l, false, [] (* actually, an error *)) and tree_of_typlist mode tyl = List.map (tree_of_typexp mode) tyl and tree_of_labeled_typlist mode tyl = List.map (fun (label, ty) -> label, tree_of_typexp mode ty) tyl and tree_of_typobject mode fi nm = begin match nm with | None -> let pr_fields fi = let (fields, rest) = flatten_fields fi in let present_fields = List.fold_right (fun (n, k, t) l -> match field_kind_repr k with | Fpublic -> (n, t) :: l | _ -> l) fields [] in let sorted_fields = List.sort (fun (n, _) (n', _) -> String.compare n n') present_fields in tree_of_typfields mode rest sorted_fields in let (fields, open_row) = pr_fields fi in Otyp_object {fields; open_row} | Some (p, _ty :: tyl) -> let args = tree_of_typlist mode tyl in let (p', s) = best_type_path p in assert (s = Id); Otyp_class (tree_of_best_type_path p p', args) | _ -> fatal_error "Out_type.tree_of_typobject" end and tree_of_typfields mode rest = function | [] -> let open_row = match get_desc rest with | Tvar _ | Tunivar _ | Tconstr _-> true | Tnil -> false | _ -> fatal_error "typfields (1)" in ([], open_row) | (s, t) :: l -> let field = (s, tree_of_typexp mode t) in let (fields, rest) = tree_of_typfields mode rest l in (field :: fields, rest) and tree_of_package mode {pack_path; pack_cstrs} = { opack_path = tree_of_path (Some Module_type) pack_path; opack_cstrs = List.map (fun (li, ty) -> (String.concat "." li, tree_of_typexp mode ty)) pack_cstrs } let typexp mode ppf ty = !Oprint.out_type ppf (tree_of_typexp mode ty) let prepared_type_expr ppf ty = typexp Type ppf ty (* "Half-prepared" type expression: [ty] should have had its names reserved, but should not have had its loops marked. *) let type_expr_with_reserved_names ppf ty = Aliases.reset (); Aliases.mark_loops ty; prepared_type_expr ppf ty let prepared_type_scheme ppf ty = typexp Type_scheme ppf ty (* Print one type declaration *) let tree_of_constraints params = List.fold_right (fun ty list -> let ty' = unalias ty in if proxy ty != proxy ty' then let tr = tree_of_typexp Type_scheme ty in (tr, tree_of_typexp Type_scheme ty') :: list else list) params [] let filter_params tyl = let params = List.fold_left (fun tyl ty -> if List.exists (eq_type ty) tyl then newty2 ~level:generic_level (Ttuple [None, ty]) :: tyl else ty :: tyl) (* Two parameters might be identical due to a constraint but we need to print them differently in order to make the output syntactically valid. We use [Ttuple [ty]] because it is printed as [ty]. *) (* Replacing fold_left by fold_right does not work! *) [] tyl in List.rev params let prepare_type_constructor_arguments = function | Cstr_tuple l -> List.iter prepare_type l | Cstr_record l -> List.iter (fun l -> prepare_type l.ld_type) l let tree_of_label l = { olab_name = Ident.name l.ld_id; olab_mut = l.ld_mutable; olab_type = tree_of_typexp Type l.ld_type; } let tree_of_constructor_arguments = function | Cstr_tuple l -> tree_of_typlist Type l | Cstr_record l -> [ Otyp_record (List.map tree_of_label l) ] let tree_of_single_constructor cd = let name = Ident.name cd.cd_id in let ret = Option.map (tree_of_typexp Type) cd.cd_res in let args = tree_of_constructor_arguments cd.cd_args in { ocstr_name = name; ocstr_args = args; ocstr_return_type = ret; } (* When printing GADT constructor, we need to forget the naming decision we took for the type parameters and constraints. Indeed, in {[ type 'a t = X: 'a -> 'b t ]} It is fine to print both the type parameter ['a] and the existentially quantified ['a] in the definition of the constructor X as ['a] *) let tree_of_constructor_in_decl cd = match cd.cd_res with | None -> tree_of_single_constructor cd | Some _ -> Variable_names.with_local_names (fun () -> tree_of_single_constructor cd) let prepare_decl id decl = let params = filter_params decl.type_params in begin match decl.type_manifest with | Some ty -> let vars = free_variables ty in List.iter (fun ty -> if get_desc ty = Tvar (Some "_") && List.exists (eq_type ty) vars then set_type_desc ty (Tvar None)) params | None -> () end; List.iter Aliases.add params; List.iter prepare_type params; List.iter (Aliases.add_printed ~non_gen:false) params; let ty_manifest = match decl.type_manifest with | None -> None | Some ty -> let ty = (* Special hack to hide variant name *) match get_desc ty with Tvariant row -> begin match row_name row with Some (Pident id', _) when Ident.same id id' -> newgenty (Tvariant (set_row_name row None)) | _ -> ty end | _ -> ty in prepare_type ty; Some ty in begin match decl.type_kind with | Type_abstract _ -> () | Type_variant (cstrs, _rep) -> List.iter (fun c -> prepare_type_constructor_arguments c.cd_args; Option.iter prepare_type c.cd_res) cstrs | Type_record(l, _rep) -> List.iter (fun l -> prepare_type l.ld_type) l | Type_open -> () end; ty_manifest, params let tree_of_type_decl id decl = let ty_manifest, params = prepare_decl id decl in let type_param ot_variance = function | Otyp_var (ot_non_gen, ot_name) -> {ot_non_gen; ot_name; ot_variance} | _ -> {ot_non_gen=false; ot_name="?"; ot_variance} in let type_defined decl = let abstr = match decl.type_kind with Type_abstract _ -> decl.type_manifest = None || decl.type_private = Private | Type_record _ -> decl.type_private = Private | Type_variant (tll, _rep) -> decl.type_private = Private || List.exists (fun cd -> cd.cd_res <> None) tll | Type_open -> decl.type_manifest = None in let vari = List.map2 (fun ty v -> let is_var = is_Tvar ty in if !Clflags.print_variance || abstr || not is_var then let inj = !Clflags.print_variance && Variance.mem Inj v || type_kind_is_abstract decl && Variance.mem Inj v && match decl.type_manifest with | None -> true | Some ty -> (* only abstract or private row types *) decl.type_private = Private && Btype.is_constr_row ~allow_ident:true (Btype.row_of_type ty) and (co, cn) = Variance.get_upper v in (match co, cn with | false, false -> Bivariant | true, false -> Covariant | false, true -> Contravariant | true, true -> NoVariance), (if inj then Injective else NoInjectivity) else (NoVariance, NoInjectivity)) decl.type_params decl.type_variance in (Ident.name id, List.map2 (fun ty cocn -> type_param cocn (tree_of_typexp Type ty)) params vari) in let tree_of_manifest ty1 = match ty_manifest with | None -> ty1 | Some ty -> Otyp_manifest (tree_of_typexp Type ty, ty1) in let (name, args) = type_defined decl in let constraints = tree_of_constraints params in let ty, priv, unboxed = match decl.type_kind with | Type_abstract _ -> begin match ty_manifest with | None -> (Otyp_abstract, Public, false) | Some ty -> tree_of_typexp Type ty, decl.type_private, false end | Type_variant (cstrs, rep) -> tree_of_manifest (Otyp_sum (List.map tree_of_constructor_in_decl cstrs)), decl.type_private, (rep = Variant_unboxed) | Type_record(lbls, rep) -> tree_of_manifest (Otyp_record (List.map tree_of_label lbls)), decl.type_private, (match rep with Record_unboxed _ -> true | _ -> false) | Type_open -> tree_of_manifest Otyp_open, decl.type_private, false in { otype_name = name; otype_params = args; otype_type = ty; otype_private = priv; otype_immediate = Type_immediacy.of_attributes decl.type_attributes; otype_unboxed = unboxed; otype_cstrs = constraints } let add_type_decl_to_preparation id decl = ignore @@ prepare_decl id decl let tree_of_prepared_type_decl id decl = tree_of_type_decl id decl let tree_of_type_decl id decl = reset_except_conflicts(); tree_of_type_decl id decl let add_constructor_to_preparation c = prepare_type_constructor_arguments c.cd_args; Option.iter prepare_type c.cd_res let prepared_constructor ppf c = !Oprint.out_constr ppf (tree_of_single_constructor c) let tree_of_type_declaration id decl rs = Osig_type (tree_of_type_decl id decl, tree_of_rec rs) let tree_of_prepared_type_declaration id decl rs = Osig_type (tree_of_prepared_type_decl id decl, tree_of_rec rs) let add_type_declaration_to_preparation id decl = add_type_decl_to_preparation id decl let prepared_type_declaration id ppf decl = !Oprint.out_sig_item ppf (tree_of_prepared_type_declaration id decl Trec_first) (* When printing extension constructor, it is important to ensure that after printing the constructor, we are still in the scope of the constructor. For GADT constructor, this can be done by printing the type parameters inside their own isolated scope. This ensures that in {[ type 'b t += A: 'b -> 'b any t ]} the type parameter `'b` is not bound when printing the type variable `'b` from the constructor definition from the type parameter. Contrarily, for non-gadt constructor, we must keep the same scope for the type parameters and the constructor because a type constraint may have changed the name of the type parameter: {[ type -'a t = .. constraint 'a> = 'a (* the universal 'a is here to steal the name 'a from the type parameter *) type 'a t = X of 'a ]} *) let add_extension_constructor_to_preparation ext = let ty_params = filter_params ext.ext_type_params in List.iter Aliases.add ty_params; List.iter prepare_type ty_params; prepare_type_constructor_arguments ext.ext_args; Option.iter prepare_type ext.ext_ret_type let extension_constructor_args_and_ret_type_subtree ext_args ext_ret_type = let ret = Option.map (tree_of_typexp Type) ext_ret_type in let args = tree_of_constructor_arguments ext_args in (args, ret) let prepared_tree_of_extension_constructor id ext es = let ty_name = Path.name ext.ext_type_path in let ty_params = filter_params ext.ext_type_params in let type_param = function | Otyp_var (_, id) -> id | _ -> "?" in let param_scope f = match ext.ext_ret_type with | None -> (* normal constructor: same scope for parameters and the constructor *) f () | Some _ -> (* gadt constructor: isolated scope for the type parameters *) Variable_names.with_local_names f in let ty_params = param_scope (fun () -> List.iter (Aliases.add_printed ~non_gen:false) ty_params; List.map (fun ty -> type_param (tree_of_typexp Type ty)) ty_params ) in let name = Ident.name id in let args, ret = extension_constructor_args_and_ret_type_subtree ext.ext_args ext.ext_ret_type in let ext = { oext_name = name; oext_type_name = ty_name; oext_type_params = ty_params; oext_args = args; oext_ret_type = ret; oext_private = ext.ext_private } in let es = match es with Text_first -> Oext_first | Text_next -> Oext_next | Text_exception -> Oext_exception in Osig_typext (ext, es) let tree_of_extension_constructor id ext es = reset_except_conflicts (); add_extension_constructor_to_preparation ext; prepared_tree_of_extension_constructor id ext es let prepared_extension_constructor id ppf ext = !Oprint.out_sig_item ppf (prepared_tree_of_extension_constructor id ext Text_first) (* Print a value declaration *) let tree_of_value_description id decl = (* Format.eprintf "@[%a@]@." raw_type_expr decl.val_type; *) let id = Ident.name id in let () = prepare_for_printing [decl.val_type] in let ty = tree_of_typexp Type_scheme decl.val_type in let vd = { oval_name = id; oval_type = ty; oval_prims = []; oval_attributes = [] } in let vd = match decl.val_kind with | Val_prim p -> Primitive.print p vd | _ -> vd in Osig_value vd (* Print a class type *) let method_type priv ty = match priv, get_desc ty with | Mpublic, Tpoly(ty, tyl) -> (ty, tyl) | _ , _ -> (ty, []) let prepare_method _lab (priv, _virt, ty) = let ty, _ = method_type priv ty in prepare_type ty let tree_of_method mode (lab, priv, virt, ty) = let (ty, tyl) = method_type priv ty in let tty = tree_of_typexp mode ty in Variable_names.remove_names (List.map Transient_expr.repr tyl); let priv = priv <> Mpublic in let virt = virt = Virtual in Ocsg_method (lab, priv, virt, tty) let rec prepare_class_type params = function | Cty_constr (_p, tyl, cty) -> let row = Btype.self_type_row cty in if List.memq (proxy row) !Aliases.visited_objects || not (List.for_all is_Tvar params) || deep_occur_list row tyl then prepare_class_type params cty else List.iter prepare_type tyl | Cty_signature sign -> (* Self may have a name *) let px = proxy sign.csig_self_row in if List.memq px !Aliases.visited_objects then Aliases.add_proxy px else Aliases.(visited_objects := px :: !visited_objects); Vars.iter (fun _ (_, _, ty) -> prepare_type ty) sign.csig_vars; Meths.iter prepare_method sign.csig_meths | Cty_arrow (_, ty, cty) -> prepare_type ty; prepare_class_type params cty let rec tree_of_class_type mode params = function | Cty_constr (p', tyl, cty) -> let row = Btype.self_type_row cty in if List.memq (proxy row) !Aliases.visited_objects || not (List.for_all is_Tvar params) then tree_of_class_type mode params cty else let namespace = Namespace.best_class_namespace p' in Octy_constr (tree_of_path namespace p', tree_of_typlist Type_scheme tyl) | Cty_signature sign -> let px = proxy sign.csig_self_row in let self_ty = if Aliases.is_aliased_proxy px then Some (Otyp_var (false, Variable_names.(name_of_type new_name) px)) else None in let csil = [] in let csil = List.fold_left (fun csil (ty1, ty2) -> Ocsg_constraint (ty1, ty2) :: csil) csil (tree_of_constraints params) in let all_vars = Vars.fold (fun l (m, v, t) all -> (l, m, v, t) :: all) sign.csig_vars [] in (* Consequence of PR#3607: order of Map.fold has changed! *) let all_vars = List.rev all_vars in let csil = List.fold_left (fun csil (l, m, v, t) -> Ocsg_value (l, m = Mutable, v = Virtual, tree_of_typexp mode t) :: csil) csil all_vars in let all_meths = Meths.fold (fun l (p, v, t) all -> (l, p, v, t) :: all) sign.csig_meths [] in let all_meths = List.rev all_meths in let csil = List.fold_left (fun csil meth -> tree_of_method mode meth :: csil) csil all_meths in Octy_signature (self_ty, List.rev csil) | Cty_arrow (l, ty, cty) -> let lab = if !print_labels || is_optional l then l else Nolabel in let tr = if is_optional l then match get_desc ty with | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> tree_of_typexp mode ty | _ -> Otyp_stuff "" else tree_of_typexp mode ty in Octy_arrow (lab, tr, tree_of_class_type mode params cty) let tree_of_class_param param variance = let ot_variance = if is_Tvar param then Asttypes.(NoVariance, NoInjectivity) else variance in match tree_of_typexp Type_scheme param with Otyp_var (ot_non_gen, ot_name) -> {ot_non_gen; ot_name; ot_variance} | _ -> {ot_non_gen=false; ot_name="?"; ot_variance} let class_variance = let open Variance in let open Asttypes in List.map (fun v -> let inj = !Clflags.print_variance && Variance.mem Inj v in (match mem May_pos v, mem May_neg v with | false, false -> Bivariant | true, false -> Covariant | false, true -> Contravariant | true, true -> NoVariance), (if inj then Injective else NoInjectivity)) let tree_of_class_declaration id cl rs = let params = filter_params cl.cty_params in reset_except_conflicts (); List.iter Aliases.add params; prepare_class_type params cl.cty_type; let px = proxy (Btype.self_type_row cl.cty_type) in List.iter prepare_type params; List.iter (Aliases.add_printed ~non_gen:false) params; if Aliases.is_aliased_proxy px then Aliases.add_printed_proxy ~non_gen:false px; let vir_flag = cl.cty_new = None in Osig_class (vir_flag, Ident.name id, List.map2 tree_of_class_param params (class_variance cl.cty_variance), tree_of_class_type Type_scheme params cl.cty_type, tree_of_rec rs) let tree_of_cltype_declaration id cl rs = let params = cl.clty_params in reset_except_conflicts (); List.iter Aliases.add params; prepare_class_type params cl.clty_type; let px = proxy (Btype.self_type_row cl.clty_type) in List.iter prepare_type params; List.iter (Aliases.add_printed ~non_gen:false) params; Aliases.mark_as_printed px; let sign = Btype.signature_of_class_type cl.clty_type in let has_virtual_vars = Vars.fold (fun _ (_,vr,_) b -> vr = Virtual || b) sign.csig_vars false in let has_virtual_meths = Meths.fold (fun _ (_,vr,_) b -> vr = Virtual || b) sign.csig_meths false in Osig_class_type (has_virtual_vars || has_virtual_meths, Ident.name id, List.map2 tree_of_class_param params (class_variance cl.clty_variance), tree_of_class_type Type_scheme params cl.clty_type, tree_of_rec rs) (* Print a module type *) let wrap_env fenv ftree arg = (* We save the current value of the short-path cache *) (* From keys *) let env = !printing_env in let old_pers = !printing_pers in (* to data *) let old_map = !printing_map in let old_depth = !printing_depth in let old_cont = !printing_cont in set_printing_env (fenv env); let tree = ftree arg in if !Clflags.real_paths || same_printing_env env then () (* our cached key is still live in the cache, and we want to keep all progress made on the computation of the [printing_map] *) else begin (* we restore the snapshotted cache before calling set_printing_env *) printing_old := env; printing_pers := old_pers; printing_depth := old_depth; printing_cont := old_cont; printing_map := old_map end; set_printing_env env; tree let dummy = { type_params = []; type_arity = 0; type_kind = Type_abstract Definition; type_private = Public; type_manifest = None; type_variance = []; type_separability = []; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = Location.none; type_attributes = []; type_immediate = Unknown; type_unboxed_default = false; type_uid = Uid.internal_not_actually_unique; } (** we hide items being defined from short-path to avoid shortening [type t = Path.To.t] into [type t = t]. *) let ident_sigitem = function | Types.Sig_type(ident,_,_,_) -> {hide=true;ident} | Types.Sig_class(ident,_,_,_) | Types.Sig_class_type (ident,_,_,_) | Types.Sig_module(ident,_, _,_,_) | Types.Sig_value (ident,_,_) | Types.Sig_modtype (ident,_,_) | Types.Sig_typext (ident,_,_,_) -> {hide=false; ident } let hide ids env = let hide_id id env = (* Global idents cannot be renamed *) if id.hide && not (Ident.global id.ident) then Env.add_type ~check:false (Ident.rename id.ident) dummy env else env in List.fold_right hide_id ids env let with_hidden_items ids f = let with_hidden_in_printing_env ids f = wrap_env (hide ids) (Ident_names.with_hidden ids) f in if not !Clflags.real_paths then with_hidden_in_printing_env ids f else Ident_names.with_hidden ids f let add_sigitem env x = Env.add_signature (Signature_group.flatten x) env let rec tree_of_modtype ?(ellipsis=false) = function | Mty_ident p -> Omty_ident (tree_of_path (Some Module_type) p) | Mty_signature sg -> Omty_signature (if ellipsis then [Osig_ellipsis] else tree_of_signature sg) | Mty_functor(param, ty_res) -> let param, env = tree_of_functor_parameter param in let res = wrap_env env (tree_of_modtype ~ellipsis) ty_res in Omty_functor (param, res) | Mty_alias p -> Omty_alias (tree_of_path (Some Module) p) and tree_of_functor_parameter = function | Unit -> None, fun k -> k | Named (param, ty_arg) -> let name, env = match param with | None -> None, fun env -> env | Some id -> Some (Ident.name id), Env.add_module ~arg:true id Mp_present ty_arg in Some (name, tree_of_modtype ~ellipsis:false ty_arg), env and tree_of_signature sg = wrap_env (fun env -> env)(fun sg -> let tree_groups = tree_of_signature_rec !printing_env sg in List.concat_map (fun (_env,l) -> List.map snd l) tree_groups ) sg and tree_of_signature_rec env' sg = let structured = List.of_seq (Signature_group.seq sg) in let collect_trees_of_rec_group group = let env = !printing_env in let env', group_trees = trees_of_recursive_sigitem_group env group in set_printing_env env'; (env, group_trees) in set_printing_env env'; List.map collect_trees_of_rec_group structured and trees_of_recursive_sigitem_group env (syntactic_group: Signature_group.rec_group) = let display (x:Signature_group.sig_item) = x.src, tree_of_sigitem x.src in let env = Env.add_signature syntactic_group.pre_ghosts env in match syntactic_group.group with | Not_rec x -> add_sigitem env x, [display x] | Rec_group items -> let ids = List.map (fun x -> ident_sigitem x.Signature_group.src) items in List.fold_left add_sigitem env items, with_hidden_items ids (fun () -> List.map display items) and tree_of_sigitem = function | Sig_value(id, decl, _) -> tree_of_value_description id decl | Sig_type(id, decl, rs, _) -> tree_of_type_declaration id decl rs | Sig_typext(id, ext, es, _) -> tree_of_extension_constructor id ext es | Sig_module(id, _, md, rs, _) -> let ellipsis = List.exists (function | Parsetree.{attr_name = {txt="..."}; attr_payload = PStr []} -> true | _ -> false) md.md_attributes in tree_of_module id md.md_type rs ~ellipsis | Sig_modtype(id, decl, _) -> tree_of_modtype_declaration id decl | Sig_class(id, decl, rs, _) -> tree_of_class_declaration id decl rs | Sig_class_type(id, decl, rs, _) -> tree_of_cltype_declaration id decl rs and tree_of_modtype_declaration id decl = let mty = match decl.mtd_type with | None -> Omty_abstract | Some mty -> tree_of_modtype mty in Osig_modtype (Ident.name id, mty) and tree_of_module id ?ellipsis mty rs = Osig_module (Ident.name id, tree_of_modtype ?ellipsis mty, tree_of_rec rs) (* For the toplevel: merge with tree_of_signature? *) let print_items showval env x = Variable_names.refresh_weak(); Ident_conflicts.reset (); let extend_val env (sigitem,outcome) = outcome, showval env sigitem in let post_process (env,l) = List.map (extend_val env) l in List.concat_map post_process @@ tree_of_signature_rec env x let same_path t t' = let open Types in eq_type t t' || match get_desc t, get_desc t' with Tconstr(p,tl,_), Tconstr(p',tl',_) -> let (p1, s1) = best_type_path p and (p2, s2) = best_type_path p' in begin match s1, s2 with Nth n1, Nth n2 when n1 = n2 -> true | (Id | Map _), (Id | Map _) when Path.same p1 p2 -> let tl = apply_subst s1 tl and tl' = apply_subst s2 tl' in List.length tl = List.length tl' && List.for_all2 eq_type tl tl' | _ -> false end | _ -> false type 'a diff = Same of 'a | Diff of 'a * 'a let trees_of_type_expansion mode Errortrace.{ty = t; expanded = t'} = Aliases.reset (); Aliases.mark_loops t; if same_path t t' then begin Aliases.add_delayed (proxy t); Same (tree_of_typexp mode t) end else begin Aliases.mark_loops t'; let t' = if proxy t == proxy t' then unalias t' else t' in (* beware order matter due to side effect, e.g. when printing object types *) let first = tree_of_typexp mode t in let second = tree_of_typexp mode t' in if first = second then Same first else Diff(first,second) end let pp_type ppf t = Style.as_inline_code !Oprint.out_type ppf t let pp_type_expansion ppf = function | Same t -> pp_type ppf t | Diff(t,t') -> fprintf ppf "@[<2>%a@ =@ %a@]" pp_type t pp_type t' (* Hide variant name and var, to force printing the expanded type *) let hide_variant_name t = let open Types in match get_desc t with | Tvariant row -> let Row {fields; more; name; fixed; closed} = row_repr row in if name = None then t else Btype.newty2 ~level:(get_level t) (Tvariant (create_row ~fields ~fixed ~closed ~name:None ~more:(Ctype.newvar2 (get_level more)))) | _ -> t let prepare_expansion Errortrace.{ty; expanded} = let expanded = hide_variant_name expanded in Variable_names.reserve ty; if not (same_path ty expanded) then Variable_names.reserve expanded; Errortrace.{ty; expanded} (* Adapt functions to exposed interface *) let namespaced_tree_of_path n = tree_of_path (Some n) let tree_of_path ?disambiguation p = tree_of_path ?disambiguation None p let tree_of_modtype = tree_of_modtype ~ellipsis:false let tree_of_type_declaration ident td rs = with_hidden_items [{hide=true; ident}] (fun () -> tree_of_type_declaration ident td rs) let tree_of_class_type kind cty = tree_of_class_type kind [] cty let prepare_class_type cty = prepare_class_type [] cty let tree_of_type_path p = let (p', s) = best_type_path p in let p'' = if (s = Id) then p' else p in tree_of_best_type_path p p''