Caml1999I031 n/Stdlib__Complex!t8@@"re @%floatD@@@°+complex.mliWVaWVk@@A"im @@@@ WVlWVu@@"B@AA@@@@@WVVWVw@@@@&@A@$zero +@@@@[[@@3C@#one! @@@@*^+^ @@?D@!i"@@@@6a,,7a,4@@KE@#neg#@'@@@*@@@@@@GdUUHdUd@@\F@$conj$@8@@@;@@@@@@Xg}}Yg}@@mG@#add%@I@@@@N@@@Q@@@@@@@@njoj@@H@#sub&@_@@@@d@@@g@@@@@@@@mm @@I@#mul'@u@@@@z@@@}@@@@@@@@p  p 4@@J@#inv(@@@@@@@@@@sLLsL[@@K@#div)@@@@@@@@@@@@@@@@vv@@L@$sqrt*@@@@@@@@@@yy@@M@%norm2+@@@@@@@@@@~\\~\q@@N@$norm,@@@@@@@@@@AA@@ O@#arg-@@@@ @@@@@@D D @@P@%polar.@@@@@@@@@@@@@@@@ K . .!K . L@@5Q@#exp/@@@@@@@@@@1O  2O  @@FR@#log0@"@@@%@@@@@@BR  CR  @@WS@#pow1@3@@@@8@@@;@@@@@@@@XU - -YU - A@@mT@@m:./Stdlib__Complex0Ʀ1̃؀ <&Stdlib0>,W:(8CamlinternalFormatBasics0cEXyWV[?WV\@@8@@"re @@@@KWVaLWVk@@cA"im @ @@@WWVlXWVu@@oB@AA@@@@@[WVV\WVw@)ocaml.docm V The type of complex numbers. [re] is the real part and [im] the imaginary part. jXxxkY@@@@@@@@@@@,,'rWVc@@Ш@г/%float{WVe|WVj@@70zyyzzzzz@yE8@@@A@@@@@&#@@@A@@=@C@@9@550WVn@@Ш@г8%floatWVp9@@?:@@B@C@@>@@A@:7@:9@$zero [[@гh!t[[@@ @@@0@sm@A@@@[ @T9 The complex number [0]. \\@@@@@@@C@@#one^^@г!t^ ^ @@ @@@0@,?*@A@@@^ @9 The complex number [1]. _  _ *@@@@@@@D@@!ia,0a,1@г!ta,3a,4@@ @@@0@,?*@A@@@a,, @9 The complex number [i]. b55b5S@@@@@@@*E@@#negdUYdU\@б@г렐!t)dU^*dU_@@ @@@0+**+++++@.A,@A@@г!t8dUc9dUd@@ @@@@@@@@@@@CdUU @琠1 Unary negation. OeeePee{@@@@@@@gF@@%$conj[g}\g}@б@г(!tfg}gg}@@ @@@0hgghhhhh@>S,@A@@г7!tug}vg}@@ @@@@@@@@@@@g}} @$ < Conjugate: given the complex [x + i.y], returns [x - i.y]. hh@@@@@@@G@@%#addjj@б@гe!tjj@@ @@@0@>S,@A@@б@гv!tjj@@ @@@@@г!tjj@@ @@@@@@@@!@@@'@@$* @@@j@s* Addition kk@@@@@@@H@@7#submm@б@г!tmm@@ @@@0@Pe,@A@@б@гŠ!tmm@@ @@@@@гҠ!tm m @@ @@@@@@@@!@@@'@@$* @@@m@- Subtraction *n  +n @@@@@@@BI@@7#mul6p $7p '@б@г!tAp )Bp *@@ @@@0CBBCCCCC@Pe,@A@@б@г!tRp .Sp /@@ @@@@@г!!t_p 3`p 4@@ @@@@@@@@!@@@'@@$* @@@mp  @0 Multiplication yq55zq5J@@@@@@@J@@7#invsLPsLS@б@гR!tsLUsLV@@ @@@0@Pe,@A@@гa!tsLZsL[@@ @@@@@@@@@@@sLL @N ! Multiplicative inverse ([1/z]). t\\t\@@@@@@@K@@%#divvv@б@г!tvv@@ @@@0@>S,@A@@б@г!tvv@@ @@@@@г!tvv@@ @@@@@@@@!@@@'@@$* @@@v@* Division ww@@@@@@@L@@7$sqrtyy@б@гޠ!tyy@@ @@@0@Pe,@A@@г!t+y,y@@ @@@@@@@@@@@6y @ڐ Square root. The result [x + i.y] is such that [x > 0] or [x = 0] and [y >= 0]. This function has a discontinuity along the negative real axis. BzC|Z@@@@@@@ZM@@%%norm2N~\`O~\e@б@г!tY~\gZ~\h@@ @@@0[ZZ[[[[[@>S,@A@@г%floath~\li~\q@@ @@@@@@@@@@@s~\\ @ 5 Norm squared: given [x + i.y], returns [x^2 + y^2]. rrr@@@@@@@N@@%$normAA@б@гX!tAA@@ @@@0@>S,@A@@гW%floatAA@@ @@@@@@@@@@@A @T 3 Norm: given [x + i.y], returns [sqrt(x^2 + y^2)]. BB@@@@@@@O@@%#argD D @б@г!tD D @@ @@@0@>S,@A@@г%floatD D @@ @@@@@@@@@@@D @  Argument. The argument of a complex number is the angle in the complex plane between the positive real axis and a line passing through zero and the number. This angle ranges from [-pi] to [pi]. This function has a discontinuity along the negative real axis. E  I  ,@@@@@@@P@@%%polarK . 2K . 7@б@г %floatK . 9K . >@@ @@@0@>S,@A@@б@гӠ%float!K . B"K . G@@ @@@@@г!t.K . K/K . L@@ @@@@@@@@!@@@'@@$* @@@<K . .@ Q [polar norm arg] returns the complex having norm [norm] and argument [arg]. HL M MIM  @@@@@@@`Q@@7#expTO  UO  @б@г!!t_O  `O  @@ @@@0a``aaaaa@Pe,@A@@г0!tnO  oO  @@ @@@@@@@@@@@yO   @ 8 Exponentiation. [exp z] returns [e] to the [z] power. P  P  @@@@@@@R@@%#logR  R  @б@г^!tR  R  @@ @@@0@>S,@A@@гm!tR  R  @@ @@@@@@@@@@@R   @Z " Natural logarithm (in base [e]). S  S  +@@@@@@@S@@%#powU - 1U - 4@б@г!tU - 6U - 7@@ @@@0@>S,@A@@б@г!tU - ;U - <@@ @@@@@г!tU - @U - A@@ @@@@@@@@!@@@'@@$* @@@U - -@ > Power function. [pow z1 z2] returns [z1] to the [z2] power. V B BV B @@@@@@@)T@@7@A@k@WB@.@@@V@B @@@m4@ @@@oH@4@@@q8@@087788888@^s:@A@ H************************************************************************AA@@BA@L@ H GBMMHBM@ H OCaml MCNC@ H SDTD3@ H Xavier Leroy, projet Cristal, INRIA Rocquencourt YE44ZE4@ H _F`F@ H Copyright 2002 Institut National de Recherche en Informatique et eGfG@ H en Automatique. kHlHg@ H qIhhrIh@ H All rights reserved. This file is distributed under the terms of wJxJ@ H the GNU Lesser General Public License version 2.1, with the }K~KN@ H special exception on linking described in the file LICENSE. LOOLO@ H MM@ H************************************************************************NN5@ * Complex numbers. This module provides arithmetic operations on complex numbers. Complex numbers are represented by their real and imaginary parts (cartesian representation). Each part is represented by a double-precision floating-point number (type [float]).  W* The type of complex numbers. [re] is the real part and [im] the imaginary part. .:* The complex number [0]. ߠ:* The complex number [1]. :* The complex number [i]. 2* Unary negation. U =* Conjugate: given the complex [x + i.y], returns [x - i.y]. +* Addition Ϡ.* Subtraction 1* Multiplication 7 "* Multiplicative inverse ([1/z]). +* Division  * Square root. The result [x + i.y] is such that [x > 0] or [x = 0] and [y >= 0]. This function has a discontinuity along the negative real axis. w 6* Norm squared: given [x + i.y], returns [x^2 + y^2]. = 4* Norm: given [x + i.y], returns [sqrt(x^2 + y^2)].  * Argument. The argument of a complex number is the angle in the complex plane between the positive real axis and a line passing through zero and the number. This angle ranges from [-pi] to [pi]. This function has a discontinuity along the negative real axis. ɠ R* [polar norm arg] returns the complex having norm [norm] and argument [arg]. } 9* Exponentiation. [exp z] returns [e] to the [z] power. C #* Natural logarithm (in base [e]).  ?* Power function. [pow z1 z2] returns [z1] to the [z2] power. @D)../ocamlc0-strict-sequence(-absname"-w8+a-4-9-41-42-44-45-48-70"-g+-warn-error"+A*-bin-annot)-nostdlib*-principal,-safe-string/-strict-formats"-o3stdlib__Complex.cmi"-cݐ 1/home/barsac/ci/builds/workspace/bootstrap/stdlib @0rt\3#H-v.0@@@8CamlinternalFormatBasics0cEXy,W:(0Ʀ1̃؀ <@0Ʀ1̃؀ =@A@@$#@JI@@@@wv@  @CB@@ð@@@P@