/*========================================================================= medInria Copyright (c) INRIA 2013. All rights reserved. See LICENSE.txt for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. =========================================================================*/ #include #include #include #include "itkNewUoaOptimizer.h" using namespace std; namespace itk { // Constructor NewUoaOptimizer ::NewUoaOptimizer() { m_MaxFunctionCalls = 5000; m_RhoBeg = 0.0; m_RhoEnd = 0.0; m_SpaceDimension = 0; m_NbInterp = 0; m_ScaleTranslation = 1.0; m_NbFunctionCalls = 0; m_BestValue = 0.0; } // Destructor NewUoaOptimizer ::~NewUoaOptimizer() { } void NewUoaOptimizer ::StartOptimization() { // Space dimension of the optimization problem (size of parameters). // The dimension must be greater than or equal to 2. m_SpaceDimension = m_CostFunction->GetNumberOfParameters(); if ( m_SpaceDimension == 0 ) return; long int n = m_SpaceDimension; // The value of IPRINT should be set to 0, 1, 2 or 3, which controls the // amount of printing. Specifically, there is no output if IPRINT=0 and // there is output only at the return if IPRINT=1. Otherwise, each new // value of RHO is printed, with the best vector of variables so far and // the corresponding value of the objective function. Further, each new // value of F with its variables are output if IPRINT=3. long int iprint = 0; // MAXFUN must be set to an upper bound on the number of calls of CALFUN. long int max_function_calls = m_MaxFunctionCalls; // NPT is the number of interpolation conditions. Its value must be in the interval [N+2,(N+1)(N+2)/2]. if ( m_NbInterp == 0 ) m_NbInterp = (2*n)+1; long int npt = m_NbInterp; // The array W will be used for working space. Its length must be at least (NPT+13)*(NPT+N)+3*N*(N+3)/2. // Partition the working space array, so that different parts of it can be // treated separately by the subroutine that performs the main calculation. double *w = new double[(((npt+13)*(npt+n)+3*(n)*(n+3)/2) + 10)]; // RHOBEG and RHOEND must be set to the initial and final values of a trust // region radius, so both must be positive with RHOEND<=RHOBEG. Typically // RHOBEG should be about one tenth of the greatest expected change to a // variable, and RHOEND should indicate the accuracy that is required in // the final values of the variables. if ( m_RhoBeg == 0.0 || m_RhoEnd == 0.0 ) { m_RhoBeg = 0.8; m_RhoEnd = 0.003; } double rhobeg = m_RhoBeg; double rhoend = m_RhoEnd; // Get initial parameters NewUoaOptimizer::ParametersType params = this->GetInitialPosition(); // Build an array x which contains the intial parameters corrected by the translation scaling factor. // The correction consits in having values in a space as uniform as possible. // The size of x is N+1 since the value of parameter is stored in cells x[1], ..., x[n]. // This is done for fortran compatibility. This array will be updated by the optimization process. double *x = new double[n+1]; for ( unsigned int i = 1; i <= n; i++ ) { x[i] = params[i-1]; if(i>=3) x[i] /= m_ScaleTranslation; } // Start optimization process this->newuoa(w, &n, &npt, &x[1], &rhobeg, &rhoend, &iprint, &max_function_calls); // Build an array x2 which contains the final parameters. The correction is now removed. NewUoaOptimizer::ParametersType x2( n ); for ( unsigned int i = 0; i < m_SpaceDimension; i++ ) { x2[i] = x[i+1]; if(i>=3) x2[i] *= m_ScaleTranslation; } // Set final parameters this->SetCurrentPosition(x2); // Clean up memory delete [] w; delete [] x; } int NewUoaOptimizer ::newuoa(double *w, long int *n, long int *npt, double *x, double *rhobeg, double *rhoend, long int *iprint, long int * maxfun) { /* Format strings */ /* static char fmt_10[] = "(/4x,\002Return from NEWUOA because NPT is not" " in\002,\002 the required interval\002)";*/ /* Builtin functions */ /*long int s_wsfe(cilist *), e_wsfe(void);*/ /* Local variables */ static long int id, np, iw, igq, ihq, ixb, ifv, ipq, ivl, ixn, ixo, ixp, ndim, nptm, ibmat, izmat; // i; //-FD Apparemment i est inutilise /* Fortran I/O blocks */ /*static cilist io___3 = { 0, 6, 0, fmt_10, 0 };*/ /*We must declare the working space w*/ np = *n + 1; nptm = *npt - np; if (*npt < *n + 2 || *npt > (*n + 2) * np / 2) { /*s_wsfe(&io___3); e_wsfe();*/ std::cerr<<"\n ERROR: Return from NEWUOA because NPT is not in the required interval \n" << std::flush; return 0; } /* This subroutine seeks the least value of a function of many variables, */ /* by a trust region method that forms quadratic models by interpolation. */ /* There can be some freedom in the interpolation conditions, which is */ /* taken up by minimizing the Frobenius norm of the change to the second */ /* derivative of the quadratic model, beginning with a zero matrix. The */ /* arguments of the subroutine are as follows. */ /* N must be set to the number of variables and must be at least two. */ /* NPT is the number of interpolation conditions. Its value must be in the */ /* interval [N+2,(N+1)(N+2)/2]. */ /* Initial values of the variables must be set in X(1),X(2),...,X(N). They */ /* will be changed to the values that give the least calculated F. */ /* RHOBEG and RHOEND must be set to the initial and final values of a trust */ /* region radius, so both must be positive with RHOEND<=RHOBEG. Typically */ /* RHOBEG should be about one tenth of the greatest expected change to a */ /* variable, and RHOEND should indicate the accuracy that is required in */ /* the final values of the variables. */ /* The value of IPRINT should be set to 0, 1, 2 or 3, which controls the */ /* amount of printing. Specifically, there is no output if IPRINT=0 and */ /* there is output only at the return if IPRINT=1. Otherwise, each new */ /* value of RHO is printed, with the best vector of variables so far and */ /* the corresponding value of the objective function. Further, each new */ /* value of F with its variables are output if IPRINT=3. */ /* MAXFUN must be set to an upper bound on the number of calls of CALFUN. */ /* The array W will be used for working space. Its length must be at least */ /* (NPT+13)*(NPT+N)+3*N*(N+3)/2. */ /* SUBROUTINE CALFUN (N,X,F) must be provided by the user. It must set F to */ /* the value of the objective function for the variables X(1),X(2),...,X(N). */ /* Partition the working space array, so that different parts of it can be */ /* treated separately by the subroutine that performs the main calculation. */ /* Parameter adjustments */ --w; --x; /* Function Body */ ndim = *npt + *n; ixb = 1; ixo = ixb + *n; ixn = ixo + *n; ixp = ixn + *n; ifv = ixp + *n * *npt; igq = ifv + *npt; ihq = igq + *n; ipq = ihq + *n * np / 2; ibmat = ipq + *npt; izmat = ibmat + ndim * *n; id = izmat + *npt * nptm; ivl = id + *n; iw = ivl + ndim; /* The above settings provide a partition of W for subroutine NEWUOB. */ /* The partition requires the first NPT*(NPT+N)+5*N*(N+3)/2 elements of */ /* W plus the space that is needed by the last array of NEWUOB. */ this->newuob(n, npt, &x[1], rhobeg, rhoend, iprint, maxfun, &w[ixb], &w[ixo], &w[ixn], &w[ixp], &w[ifv], &w[igq], &w[ihq], &w[ipq], &w[ibmat], &w[izmat], &ndim, &w[id], &w[ivl], &w[iw]); // L20: /* Free the work space */ // // L21: return 0; } int NewUoaOptimizer ::newuob(long int *n, long int *npt, double *x, double *rhobeg, double *rhoend, long int *iprint, long int * maxfun, double *xbase, double *xopt, double *xnew, double *xpt, double *fval, double *gq, double *hq, double *pq, double *bmat, double *zmat, long int *ndim, double *d__, double *vlag, double *w) { /* Format strings */ /* static char fmt_320[] = "(/4x,\002Return from NEWUOA because CALFUN has " "been\002,\002 called MAXFUN times.\002)"; static char fmt_330[] = "(/4x,\002Function number\002,i6,\002 F =\002" ",1pd18.10,\002 The corresponding X is:\002/(2x,5d15.6))"; static char fmt_370[] = "(/4x,\002Return from NEWUOA because a trus" "t\002,\002 region step has failed to reduce Q.\002)"; static char fmt_500[] = "(5x)"; static char fmt_510[] = "(/4x,\002New RHO =\002,1pd11.4,5x,\002Number o" "f\002,\002 function values =\002,i6)"; static char fmt_520[] = "(4x,\002Least value of F =\002,1pd23.15,9x,\002" "The corresponding X is:\002/(2x,5d15.6))"; static char fmt_550[] = "(/4x,\002At the return from NEWUOA\002,5x,\002N" "umber of function values =\002,i6)";*/ /* System generated locals */ long int xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, zmat_offset, i__1, i__2, i__3; double d__1, d__2, d__3; /* Builtin functions */ // double sqrt(double); /*long int s_wsfe(cilist *), e_wsfe(void), do_fio(long int *, char *, ftnlen);*/ /* Local variables */ static double f; static long int i__, j, k, ih, nf, nh, ip, jp; // static long int size, size2, bsize; static double dx; static long int np, nfm; static double one; static long int idz; static double dsq, rho; static long int ipt, jpt; static double sum, fbeg, diff, half, beta; static long int nfmm; static double gisq; static long int knew; static double temp, suma, sumb, fopt, bsum, gqsq; static long int kopt, nptm; static double zero, xipt, xjpt, sumz, diffa, diffb, diffc, hdiag, alpha, delta, recip, reciq, fsave; static long int ksave, nfsav, itemp; static double dnorm, ratio, dstep, tenth, vquad; static long int ktemp; static double tempq; static long int itest; static double rhosq; static double detrat, crvmin; static long int nftest; static double distsq; static double xoptsq; NewUoaOptimizer::ParametersType xCoord( m_SpaceDimension ); /* Fortran I/O blocks */ /* static cilist io___55 = { 0, 6, 0, fmt_320, 0 }; static cilist io___56 = { 0, 6, 0, fmt_330, 0 }; static cilist io___61 = { 0, 6, 0, fmt_370, 0 }; static cilist io___68 = { 0, 6, 0, fmt_500, 0 }; static cilist io___69 = { 0, 6, 0, fmt_510, 0 }; static cilist io___70 = { 0, 6, 0, fmt_520, 0 }; static cilist io___71 = { 0, 6, 0, fmt_550, 0 }; static cilist io___72 = { 0, 6, 0, fmt_520, 0 };*/ /* The arguments N, NPT, X, RHOBEG, RHOEND, IPRINT and MAXFUN are identical */ /* to the corresponding arguments in SUBROUTINE NEWUOA. */ /* XBASE will hold a shift of origin that should reduce the contributions */ /* from rounding errors to values of the model and Lagrange functions. */ /* XOPT will be set to the displacement from XBASE of the vector of */ /* variables that provides the least calculated F so far. */ /* XNEW will be set to the displacement from XBASE of the vector of */ /* variables for the current calculation of F. */ /* XPT will contain the interpolation point coordinates relative to XBASE. */ /* FVAL will hold the values of F at the interpolation points. */ /* GQ will hold the gradient of the quadratic model at XBASE. */ /* HQ will hold the explicit second derivatives of the quadratic model. */ /* PQ will contain the parameters of the implicit second derivatives of */ /* the quadratic model. */ /* BMAT will hold the last N columns of H. */ /* ZMAT will hold the factorization of the leading NPT by NPT submatrix of */ /* H, this factorization being ZMAT times Diag(DZ) times ZMAT^T, where */ /* the elements of DZ are plus or minus one, as specified by IDZ. */ /* NDIM is the first dimension of BMAT and has the value NPT+N. */ /* D is reserved for trial steps from XOPT. */ /* VLAG will contain the values of the Lagrange functions at a new point X. */ /* They are part of a product that requires VLAG to be of length NDIM. */ /* The array W will be used for working space. Its length must be at least */ /* 10*NDIM = 10*(NPT+N). */ /* Set some constants. */ /* Parameter adjustments */ zmat_dim1 = *npt; zmat_offset = 1 + zmat_dim1; zmat -= zmat_offset; xpt_dim1 = *npt; xpt_offset = 1 + xpt_dim1; xpt -= xpt_offset; --x; --xbase; --xopt; --xnew; --fval; --gq; --hq; --pq; bmat_dim1 = *ndim; bmat_offset = 1 + bmat_dim1; bmat -= bmat_offset; --d__; --vlag; --w; /* Function Body */ half = .5; one = 1.; tenth = .1; zero = 0.; np = *n + 1; nh = *n * np / 2; nptm = *npt - np; nftest = max(*maxfun,(long int)1); /* Set the initial elements of XPT, BMAT, HQ, PQ and ZMAT to zero. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { xbase[j] = x[j]; i__2 = *npt; for (k = 1; k <= i__2; ++k) { /* L10: */ xpt[k + j * xpt_dim1] = zero; } i__2 = *ndim; for (i__ = 1; i__ <= i__2; ++i__) { /* L20: */ bmat[i__ + j * bmat_dim1] = zero; } } i__2 = nh; for (ih = 1; ih <= i__2; ++ih) { /* L30: */ hq[ih] = zero; } i__2 = *npt; for (k = 1; k <= i__2; ++k) { pq[k] = zero; i__1 = nptm; for (j = 1; j <= i__1; ++j) { /* L40: */ zmat[k + j * zmat_dim1] = zero; } } /* Begin the initialization procedure. NF becomes one more than the number */ /* of function values so far. The coordinates of the displacement of the */ /* next initial interpolation point from XBASE are set in XPT(NF,.). */ rhosq = *rhobeg * *rhobeg; recip = one / rhosq; reciq = sqrt(half) / rhosq; nf = 0; L50: nfm = nf; nfmm = nf - *n; ++nf; if (nfm <= *n << 1) { if (nfm >= 1 && nfm <= *n) { xpt[nf + nfm * xpt_dim1] = *rhobeg; } else if (nfm > *n) { xpt[nf + nfmm * xpt_dim1] = -(*rhobeg); } } else { itemp = (nfmm - 1) / *n; jpt = nfm - itemp * *n - *n; ipt = jpt + itemp; if (ipt > *n) { itemp = jpt; jpt = ipt - *n; ipt = itemp; } xipt = *rhobeg; if (fval[ipt + np] < fval[ipt + 1]) { xipt = -xipt; } xjpt = *rhobeg; if (fval[jpt + np] < fval[jpt + 1]) { xjpt = -xjpt; } xpt[nf + ipt * xpt_dim1] = xipt; xpt[nf + jpt * xpt_dim1] = xjpt; } /* Calculate the next value of F, label 70 being reached immediately */ /* after this calculation. The least function value so far and its index */ /* are required. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { x[j] = xpt[nf + j * xpt_dim1] + xbase[j]; } goto L310; // if (nf > nftest) // { // --nf; // if (*iprint > 0) std::cerr<<"\n Return from NEWUOA because CALFUN has been called MAXFUN times \n"; // if (fopt <= f) // { // i__2 = *n; // for (i__ = 1; i__ <= i__2; ++i__) // x[i__] = xbase[i__] + xopt[i__]; // f = fopt; // } // // if (*iprint >= 1) // { // std::cerr<<"\n\r\n\r At the return from NEWUOA Number of function values = "<= 1 && nfm <= *n) { gq[nfm] = (f - fbeg) / *rhobeg; if (*npt < nf + *n) { bmat[nfm * bmat_dim1 + 1] = -one / *rhobeg; bmat[nf + nfm * bmat_dim1] = one / *rhobeg; bmat[*npt + nfm + nfm * bmat_dim1] = -half * rhosq; } } else if (nfm > *n) { bmat[nf - *n + nfmm * bmat_dim1] = half / *rhobeg; bmat[nf + nfmm * bmat_dim1] = -half / *rhobeg; zmat[nfmm * zmat_dim1 + 1] = -reciq - reciq; zmat[nf - *n + nfmm * zmat_dim1] = reciq; zmat[nf + nfmm * zmat_dim1] = reciq; ih = nfmm * (nfmm + 1) / 2; temp = (fbeg - f) / *rhobeg; hq[ih] = (gq[nfmm] - temp) / *rhobeg; gq[nfmm] = half * (gq[nfmm] + temp); } /* Set the off-diagonal second derivatives of the Lagrange functions and */ /* the initial quadratic model. */ } else { ih = ipt * (ipt - 1) / 2 + jpt; if (xipt < zero) { ipt += *n; } if (xjpt < zero) { jpt += *n; } zmat[nfmm * zmat_dim1 + 1] = recip; zmat[nf + nfmm * zmat_dim1] = recip; zmat[ipt + 1 + nfmm * zmat_dim1] = -recip; zmat[jpt + 1 + nfmm * zmat_dim1] = -recip; hq[ih] = (fbeg - fval[ipt + 1] - fval[jpt + 1] + f) / (xipt * xjpt); } if (nf < *npt) { goto L50; } /* Begin the iterative procedure, because the initial model is complete. */ rho = *rhobeg; delta = rho; idz = 1; diffa = zero; diffb = zero; itest = 0; xoptsq = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { xopt[i__] = xpt[kopt + i__ * xpt_dim1]; /* L80: */ /* Computing 2nd power */ d__1 = xopt[i__]; xoptsq += d__1 * d__1; } L90: nfsav = nf; /* Generate the next trust region step and test its length. Set KNEW */ /* to -1 if the purpose of the next F will be to improve the model. */ L100: knew = 0; this->trsapp(n, npt, &xopt[1], &xpt[xpt_offset], &gq[1], &hq[1], &pq[1], &delta, &d__[1], &w[1], &w[np], &w[np + *n], &w[np + (*n << 1)], &crvmin); dsq = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* L110: */ /* Computing 2nd power */ d__1 = d__[i__]; dsq += d__1 * d__1; } /* Computing MIN */ d__1 = delta, d__2 = sqrt(dsq); dnorm = min(d__1,d__2); if (dnorm < half * rho) { knew = -1; delta = tenth * delta; ratio = -1.; if (delta <= rho * 1.5) { delta = rho; } if (nf <= nfsav + 2) { goto L460; // break } temp = crvmin * .125 * rho * rho; /* Computing MAX */ d__1 = max(diffa,diffb); if (temp <= max(d__1,diffc)) { goto L460; // break } goto L490; } /* Shift XBASE if XOPT may be too far from XBASE. First make the changes */ /* to BMAT that do not depend on ZMAT. */ L120: if (dsq <= xoptsq * .001) { tempq = xoptsq * .25; i__1 = *npt; for (k = 1; k <= i__1; ++k) { sum = zero; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* L130: */ sum += xpt[k + i__ * xpt_dim1] * xopt[i__]; } temp = pq[k] * sum; sum -= half * xoptsq; w[*npt + k] = sum; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { gq[i__] += temp * xpt[k + i__ * xpt_dim1]; xpt[k + i__ * xpt_dim1] -= half * xopt[i__]; vlag[i__] = bmat[k + i__ * bmat_dim1]; w[i__] = sum * xpt[k + i__ * xpt_dim1] + tempq * xopt[i__]; ip = *npt + i__; i__3 = i__; for (j = 1; j <= i__3; ++j) { /* L140: */ bmat[ip + j * bmat_dim1] = bmat[ip + j * bmat_dim1] + vlag[i__] * w[j] + w[i__] * vlag[j]; } } } /* Then the revisions of BMAT that depend on ZMAT are calculated. */ i__3 = nptm; for (k = 1; k <= i__3; ++k) { sumz = zero; i__2 = *npt; for (i__ = 1; i__ <= i__2; ++i__) { sumz += zmat[i__ + k * zmat_dim1]; /* L150: */ w[i__] = w[*npt + i__] * zmat[i__ + k * zmat_dim1]; } i__2 = *n; for (j = 1; j <= i__2; ++j) { sum = tempq * sumz * xopt[j]; i__1 = *npt; for (i__ = 1; i__ <= i__1; ++i__) { /* L160: */ sum += w[i__] * xpt[i__ + j * xpt_dim1]; } vlag[j] = sum; if (k < idz) { sum = -sum; } i__1 = *npt; for (i__ = 1; i__ <= i__1; ++i__) { /* L170: */ bmat[i__ + j * bmat_dim1] += sum * zmat[i__ + k * zmat_dim1]; } } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { ip = i__ + *npt; temp = vlag[i__]; if (k < idz) { temp = -temp; } i__2 = i__; for (j = 1; j <= i__2; ++j) { /* L180: */ bmat[ip + j * bmat_dim1] += temp * vlag[j]; } } } /* The following instructions complete the shift of XBASE, including */ /* the changes to the parameters of the quadratic model. */ ih = 0; i__2 = *n; for (j = 1; j <= i__2; ++j) { w[j] = zero; i__1 = *npt; for (k = 1; k <= i__1; ++k) { w[j] += pq[k] * xpt[k + j * xpt_dim1]; /* L190: */ xpt[k + j * xpt_dim1] -= half * xopt[j]; } i__1 = j; for (i__ = 1; i__ <= i__1; ++i__) { ++ih; if (i__ < j) { gq[j] += hq[ih] * xopt[i__]; } gq[i__] += hq[ih] * xopt[j]; hq[ih] = hq[ih] + w[i__] * xopt[j] + xopt[i__] * w[j]; /* L200: */ bmat[*npt + i__ + j * bmat_dim1] = bmat[*npt + j + i__ * bmat_dim1]; } } i__1 = *n; for (j = 1; j <= i__1; ++j) { xbase[j] += xopt[j]; /* L210: */ xopt[j] = zero; } xoptsq = zero; } /* Pick the model step if KNEW is positive. A different choice of D */ /* may be made later, if the choice of D by BIGLAG causes substantial */ /* cancellation in DENOM. */ if (knew > 0) { this->biglag(n, npt, &xopt[1], &xpt[xpt_offset], &bmat[bmat_offset], &zmat[zmat_offset], &idz, ndim, &knew, &dstep, &d__[1], &alpha, &vlag[1], &vlag[*npt + 1], &w[1], &w[np], &w[np + *n]); } /* Calculate VLAG and BETA for the current choice of D. The first NPT */ /* components of W_check will be held in W. */ i__1 = *npt; for (k = 1; k <= i__1; ++k) { suma = zero; sumb = zero; sum = zero; i__2 = *n; for (j = 1; j <= i__2; ++j) { suma += xpt[k + j * xpt_dim1] * d__[j]; sumb += xpt[k + j * xpt_dim1] * xopt[j]; /* L220: */ sum += bmat[k + j * bmat_dim1] * d__[j]; } w[k] = suma * (half * suma + sumb); /* L230: */ vlag[k] = sum; } beta = zero; i__1 = nptm; for (k = 1; k <= i__1; ++k) { sum = zero; i__2 = *npt; for (i__ = 1; i__ <= i__2; ++i__) { /* L240: */ sum += zmat[i__ + k * zmat_dim1] * w[i__]; } if (k < idz) { beta += sum * sum; sum = -sum; } else { beta -= sum * sum; } i__2 = *npt; for (i__ = 1; i__ <= i__2; ++i__) { /* L250: */ vlag[i__] += sum * zmat[i__ + k * zmat_dim1]; } } bsum = zero; dx = zero; i__2 = *n; for (j = 1; j <= i__2; ++j) { sum = zero; i__1 = *npt; for (i__ = 1; i__ <= i__1; ++i__) { /* L260: */ sum += w[i__] * bmat[i__ + j * bmat_dim1]; } bsum += sum * d__[j]; jp = *npt + j; i__1 = *n; for (k = 1; k <= i__1; ++k) { /* L270: */ sum += bmat[jp + k * bmat_dim1] * d__[k]; } vlag[jp] = sum; bsum += sum * d__[j]; /* L280: */ dx += d__[j] * xopt[j]; } beta = dx * dx + dsq * (xoptsq + dx + dx + half * dsq) + beta - bsum; vlag[kopt] += one; /* If KNEW is positive and if the cancellation in DENOM is unacceptable, */ /* then BIGDEN calculates an alternative model step, XNEW being used for */ /* working space. */ if (knew > 0) { /* Computing 2nd power */ d__1 = vlag[knew]; temp = one + alpha * beta / (d__1 * d__1); if (abs(temp) <= .8) { this->bigden(n, npt, &xopt[1], &xpt[xpt_offset], &bmat[bmat_offset], &zmat[zmat_offset], &idz, ndim, &kopt, &knew, &d__[1], &w[1], &vlag[1], &beta, &xnew[1], &w[*ndim + 1], &w[*ndim * 6 + 1]); } } L290: i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { xnew[i__] = xopt[i__] + d__[i__]; /* L300: */ x[i__] = xbase[i__] + xnew[i__]; } ++nf; L310: if (nf > nftest) { --nf; if (*iprint > 0) { /*s_wsfe(&io___55); e_wsfe();*/ } goto L530; } for (unsigned int i=0; i=3) xCoord[i] *= m_ScaleTranslation; } f = (double) this->m_CostFunction->GetValue(xCoord); if (*iprint == 3) { /*s_wsfe(&io___56); do_fio(&c__1, (char *)&nf, (ftnlen)sizeof(long int)); do_fio(&c__1, (char *)&f, (ftnlen)sizeof(double)); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { do_fio(&c__1, (char *)&x[i__], (ftnlen)sizeof(double)); } e_wsfe();*/ std::cerr << "\n Function number = " << nf << " F = " << f << "\n\r The corresponding X is: " << std::flush; } if (nf <= *npt) { goto L70; } if (knew == -1) { goto L530; } /* Use the quadratic model to predict the change in F due to the step D, */ /* and set DIFF to the error of this prediction. */ vquad = zero; ih = 0; i__2 = *n; for (j = 1; j <= i__2; ++j) { vquad += d__[j] * gq[j]; i__1 = j; for (i__ = 1; i__ <= i__1; ++i__) { ++ih; temp = d__[i__] * xnew[j] + d__[j] * xopt[i__]; if (i__ == j) { temp = half * temp; } /* L340: */ vquad += temp * hq[ih]; } } i__1 = *npt; for (k = 1; k <= i__1; ++k) { /* L350: */ vquad += pq[k] * w[k]; } diff = f - fopt - vquad; diffc = diffb; diffb = diffa; diffa = abs(diff); if (dnorm > rho) { nfsav = nf; } /* Update FOPT and XOPT if the new F is the least value of the objective */ /* function so far. The branch when KNEW is positive occurs if D is not */ /* a trust region step. */ fsave = fopt; if (f < fopt) { fopt = f; xoptsq = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { xopt[i__] = xnew[i__]; /* L360: */ /* Computing 2nd power */ d__1 = xopt[i__]; xoptsq += d__1 * d__1; } } ksave = knew; if (knew > 0) { goto L410; } /* Pick the next value of DELTA after a trust region step. */ if (vquad >= zero) { if (*iprint > 0) { /*s_wsfe(&io___61); e_wsfe();*/ } goto L530; } ratio = (f - fsave) / vquad; if (ratio <= tenth) { delta = half * dnorm; } else if (ratio <= .7) { /* Computing MAX */ d__1 = half * delta; delta = max(d__1,dnorm); } else { /* Computing MAX */ d__1 = half * delta, d__2 = dnorm + dnorm; delta = max(d__1,d__2); } if (delta <= rho * 1.5) { delta = rho; } /* Set KNEW to the index of the next interpolation point to be deleted. */ /* Computing MAX */ d__2 = tenth * delta; /* Computing 2nd power */ d__1 = max(d__2,rho); rhosq = d__1 * d__1; ktemp = 0; detrat = zero; if (f >= fsave) { ktemp = kopt; detrat = one; } i__1 = *npt; for (k = 1; k <= i__1; ++k) { hdiag = zero; i__2 = nptm; for (j = 1; j <= i__2; ++j) { temp = one; if (j < idz) { temp = -one; } /* L380: */ /* Computing 2nd power */ d__1 = zmat[k + j * zmat_dim1]; hdiag += temp * (d__1 * d__1); } /* Computing 2nd power */ d__2 = vlag[k]; temp = (d__1 = beta * hdiag + d__2 * d__2, abs(d__1)); distsq = zero; i__2 = *n; for (j = 1; j <= i__2; ++j) { /* L390: */ /* Computing 2nd power */ d__1 = xpt[k + j * xpt_dim1] - xopt[j]; distsq += d__1 * d__1; } if (distsq > rhosq) { /* Computing 3rd power */ d__1 = distsq / rhosq; temp *= d__1 * (d__1 * d__1); } if (temp > detrat && k != ktemp) { detrat = temp; knew = k; } /* L400: */ } if (knew == 0) { goto L460; } /* Update BMAT, ZMAT and IDZ, so that the KNEW-th interpolation point */ /* can be moved. Begin the updating of the quadratic model, starting */ /* with the explicit second derivative term. */ L410: this->update(n, npt, &bmat[bmat_offset], &zmat[zmat_offset], &idz, ndim, &vlag[1], &beta, &knew, &w[1]); fval[knew] = f; ih = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { temp = pq[knew] * xpt[knew + i__ * xpt_dim1]; i__2 = i__; for (j = 1; j <= i__2; ++j) { ++ih; /* L420: */ hq[ih] += temp * xpt[knew + j * xpt_dim1]; } } pq[knew] = zero; /* Update the other second derivative parameters, and then the gradient */ /* vector of the model. Also include the new interpolation point. */ i__2 = nptm; for (j = 1; j <= i__2; ++j) { temp = diff * zmat[knew + j * zmat_dim1]; if (j < idz) { temp = -temp; } i__1 = *npt; for (k = 1; k <= i__1; ++k) { /* L440: */ pq[k] += temp * zmat[k + j * zmat_dim1]; } } gqsq = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { gq[i__] += diff * bmat[knew + i__ * bmat_dim1]; /* Computing 2nd power */ d__1 = gq[i__]; gqsq += d__1 * d__1; /* L450: */ xpt[knew + i__ * xpt_dim1] = xnew[i__]; } /* If a trust region step makes a small change to the objective function, */ /* then calculate the gradient of the least Frobenius norm interpolant at */ /* XBASE, and store it in W, using VLAG for a vector of right hand sides. */ if (ksave == 0 && delta == rho) { if (abs(ratio) > .01) { itest = 0; } else { i__1 = *npt; for (k = 1; k <= i__1; ++k) { /* L700: */ vlag[k] = fval[k] - fval[kopt]; } gisq = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { sum = zero; i__2 = *npt; for (k = 1; k <= i__2; ++k) { /* L710: */ sum += bmat[k + i__ * bmat_dim1] * vlag[k]; } gisq += sum * sum; /* L720: */ w[i__] = sum; } /* Test whether to replace the new quadratic model by the least Frobenius */ /* norm interpolant, making the replacement if the test is satisfied. */ ++itest; if (gqsq < gisq * 100.) { itest = 0; } if (itest >= 3) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* L730: */ gq[i__] = w[i__]; } i__1 = nh; for (ih = 1; ih <= i__1; ++ih) { /* L740: */ hq[ih] = zero; } i__1 = nptm; for (j = 1; j <= i__1; ++j) { w[j] = zero; i__2 = *npt; for (k = 1; k <= i__2; ++k) { /* L750: */ w[j] += vlag[k] * zmat[k + j * zmat_dim1]; } /* L760: */ if (j < idz) { w[j] = -w[j]; } } i__1 = *npt; for (k = 1; k <= i__1; ++k) { pq[k] = zero; i__2 = nptm; for (j = 1; j <= i__2; ++j) { /* L770: */ pq[k] += zmat[k + j * zmat_dim1] * w[j]; } } itest = 0; } } } if (f < fsave) { kopt = knew; } /* If a trust region step has provided a sufficient decrease in F, then */ /* branch for another trust region calculation. The case KSAVE>0 occurs */ /* when the new function value was calculated by a model step. */ if (f <= fsave + tenth * vquad) { goto L100; } if (ksave > 0) { goto L100; } /* Alternatively, find out if the interpolation points are close enough */ /* to the best point so far. */ knew = 0; L460: distsq = delta * 4. * delta; i__2 = *npt; for (k = 1; k <= i__2; ++k) { sum = zero; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* L470: */ /* Computing 2nd power */ d__1 = xpt[k + j * xpt_dim1] - xopt[j]; sum += d__1 * d__1; } if (sum > distsq) { knew = k; distsq = sum; } /* L480: */ } /* If KNEW is positive, then set DSTEP, and branch back for the next */ /* iteration, which will generate a "model step". */ if (knew > 0) { /* Computing MAX */ /* Computing MIN */ d__2 = tenth * sqrt(distsq), d__3 = half * delta; d__1 = min(d__2,d__3); dstep = max(d__1,rho); dsq = dstep * dstep; goto L120; } if (ratio > zero) { goto L100; } if (max(delta,dnorm) > rho) { goto L100; } /* The calculations with the current value of RHO are complete. Pick the */ /* next values of RHO and DELTA. */ L490: if (rho > *rhoend) { delta = half * rho; ratio = rho / *rhoend; if (ratio <= 16.) { rho = *rhoend; } else if (ratio <= 250.) { rho = sqrt(ratio) * *rhoend; } else { rho = tenth * rho; } delta = max(delta,rho); if (*iprint >= 2) { if (*iprint >= 3) { /*s_wsfe(&io___68); e_wsfe();*/ std::cerr<<" " << std::flush; } /*s_wsfe(&io___69); do_fio(&c__1, (char *)&rho, (ftnlen)sizeof(double)); do_fio(&c__1, (char *)&nf, (ftnlen)sizeof(long int)); e_wsfe();*/ /*s_wsfe(&io___70); do_fio(&c__1, (char *)&fopt, (ftnlen)sizeof(double)); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { d__1 = xbase[i__] + xopt[i__]; do_fio(&c__1, (char *)&d__1, (ftnlen)sizeof(double)); } e_wsfe();*/ for(i__ = 1; i__ <=*n;++i__) { std::cerr <<"\n\r "<<(xbase[i__] + xopt[i__]) << std::flush; } std::cerr <<"\n\r" << std::flush; } goto L90; } /* Return from the calculation, after another Newton-Raphson step, if */ /* it is too short to have been tried before. */ if (knew == -1) { goto L290; } L530: if (fopt <= f) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* L540: */ x[i__] = xbase[i__] + xopt[i__]; } f = fopt; } if (*iprint >= 1) { /* s_wsfe(&io___71); do_fio(&c__1, (char *)&nf, (ftnlen)sizeof(long int)); e_wsfe();*/ /*s_wsfe(&io___72); do_fio(&c__1, (char *)&f, (ftnlen)sizeof(double)); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { do_fio(&c__1, (char *)&x[i__], (ftnlen)sizeof(double)); } e_wsfe();*/ std::cerr<<" \n\r Least Value of F = "< (dd * .99 * gg)) { temp = one; } tau = scale * (abs(sp) + half * scale * abs(dhd)); if ((gg * delsq) < (tau * .01 * tau)) { temp = one; } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = scale * d__[i__]; gd[i__] = scale * gd[i__]; /* L70: */ s[i__] = gc[i__] + temp * gd[i__]; } /* Begin the iteration by overwriting S with a vector that has the */ /* required length and direction, except that termination occurs if */ /* the given D and S are nearly parallel. */ L80: ++iterc; dd = zero; sp = zero; ss = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing 2nd power */ d__1 = d__[i__]; dd += d__1 * d__1; sp += d__[i__] * s[i__]; /* L90: */ /* Computing 2nd power */ d__1 = s[i__]; ss += d__1 * d__1; } temp = dd * ss - sp * sp; if (temp <= dd * 1e-8 * ss) { goto L160; } denom = sqrt(temp); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { s[i__] = (dd * s[i__] - sp * d__[i__]) / denom; /* L100: */ w[i__] = zero; } /* Calculate the coefficients of the objective function on the circle, */ /* beginning with the multiplication of S by the second derivative matrix. */ i__1 = *npt; for (k = 1; k <= i__1; ++k) { sum = zero; i__2 = *n; for (j = 1; j <= i__2; ++j) { /* L110: */ sum += xpt[k + j * xpt_dim1] * s[j]; } sum = hcol[k] * sum; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* L120: */ w[i__] += sum * xpt[k + i__ * xpt_dim1]; } } cf1 = zero; cf2 = zero; cf3 = zero; cf4 = zero; cf5 = zero; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { cf1 += s[i__] * w[i__]; cf2 += d__[i__] * gc[i__]; cf3 += s[i__] * gc[i__]; cf4 += d__[i__] * gd[i__]; /* L130: */ cf5 += s[i__] * gd[i__]; } cf1 = half * cf1; cf4 = half * cf4 - cf1; /* Seek the value of the angle that maximizes the modulus of TAU. */ taubeg = cf1 + cf2 + cf4; taumax = taubeg; tauold = taubeg; isave = 0; iu = 49; temp = twopi / (double) (iu + 1); i__2 = iu; for (i__ = 1; i__ <= i__2; ++i__) { angle = (double) i__ * temp; cth = cos(angle); sth = sin(angle); tau = cf1 + (cf2 + cf4 * cth) * cth + (cf3 + cf5 * cth) * sth; if (abs(tau) > abs(taumax)) { taumax = tau; isave = i__; tempa = tauold; } else if (i__ == isave + 1) { tempb = tau; } /* L140: */ tauold = tau; } if (isave == 0) { tempa = tau; } if (isave == iu) { tempb = taubeg; } step = zero; if (tempa != tempb) { tempa -= taumax; tempb -= taumax; step = half * (tempa - tempb) / (tempa + tempb); } angle = temp * ((double) isave + step); /* Calculate the new D and GD. Then test for convergence. */ cth = cos(angle); sth = sin(angle); tau = cf1 + (cf2 + cf4 * cth) * cth + (cf3 + cf5 * cth) * sth; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { d__[i__] = cth * d__[i__] + sth * s[i__]; gd[i__] = cth * gd[i__] + sth * w[i__]; /* L150: */ s[i__] = gc[i__] + gd[i__]; } if (abs(tau) <= abs(taubeg) * 1.1) { goto L160; } if (iterc < *n) { goto L80; } L160: return 0; } int NewUoaOptimizer ::bigden(long int *n, long int *npt, double *xopt, double *xpt, double *bmat, double *zmat, long int *idz, long int *ndim, long int *kopt, long int *knew, double *d__, double *w, double *vlag, double *beta, double *s, double *wvec, double *prod) { /* System generated locals */ long int xpt_dim1, xpt_offset, bmat_dim1, bmat_offset, zmat_dim1, zmat_offset, wvec_dim1, wvec_offset, prod_dim1, prod_offset, i__1, i__2; double d__1; /* Builtin functions */ // double atan(double), sqrt(double), cos(double), sin(double); /* Local variables */ static long int i__, j, k; static double dd; static long int jc; static double ds; static long int ip, iu, nw; static double ss, den[9], one, par[9], tau, sum, two, diff, half, temp; static long int ksav; static double step; static long int nptm; static double zero, alpha, angle, denex[9]; static long int iterc; static double tempa, tempb, tempc; static long int isave; static double ssden, dtest, quart, xoptd, twopi, xopts, denold, denmax, densav, dstemp, sumold, sstemp, xoptsq; /* N is the number of variables. */ /* NPT is the number of interpolation equations. */ /* XOPT is the best interpolation point so far. */ /* XPT contains the coordinates of the current interpolation points. */ /* BMAT provides the last N columns of H. */ /* ZMAT and IDZ give a factorization of the first NPT by NPT submatrix of H. */ /* NDIM is the first dimension of BMAT and has the value NPT+N. */ /* KOPT is the index of the optimal interpolation point. */ /* KNEW is the index of the interpolation point that is going to be moved. */ /* D will be set to the step from XOPT to the new point, and on entry it */ /* should be the D that was calculated by the last call of BIGLAG. The */ /* length of the initial D provides a trust region bound on the final D. */ /* W will be set to Wcheck for the final choice of D. */ /* VLAG will be set to Theta*Wcheck+e_b for the final choice of D. */ /* BETA will be set to the value that will occur in the updating formula */ /* when the KNEW-th interpolation point is moved to its new position. */ /* S, WVEC, PROD and the private arrays DEN, DENEX and PAR will be used */ /* for working space. */ /* D is calculated in a way that should provide a denominator with a large */ /* modulus in the updating formula when the KNEW-th interpolation point is */ /* shifted to the new position XOPT+D. */ /* Set some constants. */ /* Parameter adjustments */ zmat_dim1 = *npt; zmat_offset = 1 + zmat_dim1; zmat -= zmat_offset; xpt_dim1 = *npt; xpt_offset = 1 + xpt_dim1; xpt -= xpt_offset; --xopt; prod_dim1 = *ndim; prod_offset = 1 + prod_dim1; prod -= prod_offset; wvec_dim1 = *ndim; wvec_offset = 1 + wvec_dim1; wvec -= wvec_offset; bmat_dim1 = *ndim; bmat_offset = 1 + bmat_dim1; bmat -= bmat_offset; --d__; --w; --vlag; --s; /* Function Body */ half = .5; one = 1.; quart = .25; two = 2.; zero = 0.; twopi = atan(one) * 8.; nptm = *npt - *n - 1; /* Store the first NPT elements of the KNEW-th column of H in W(N+1) */ /* to W(N+NPT). */ i__1 = *npt; for (k = 1; k <= i__1; ++k) { /* L10: */ w[*n + k] = zero; } i__1 = nptm; for (j = 1; j <= i__1; ++j) { temp = zmat[*knew + j * zmat_dim1]; if (j < *idz) { temp = -temp; } i__2 = *npt; for (k = 1; k <= i__2; ++k) { /* L20: */ w[*n + k] += temp * zmat[k + j * zmat_dim1]; } } alpha = w[*n + *knew]; /* The initial search direction D is taken from the last call of BIGLAG, */ /* and the initial S is set below, usually to the direction from X_OPT */ /* to X_KNEW, but a different direction to an interpolation point may */ /* be chosen, in order to prevent S from being nearly parallel to D. */ dd = zero; ds = zero; ss = zero; xoptsq = zero; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing 2nd power */ d__1 = d__[i__]; dd += d__1 * d__1; s[i__] = xpt[*knew + i__ * xpt_dim1] - xopt[i__]; ds += d__[i__] * s[i__]; /* Computing 2nd power */ d__1 = s[i__]; ss += d__1 * d__1; /* L30: */ /* Computing 2nd power */ d__1 = xopt[i__]; xoptsq += d__1 * d__1; } if ((ds * ds) > (dd * .99 * ss)) { ksav = *knew; dtest = ds * ds / ss; i__2 = *npt; for (k = 1; k <= i__2; ++k) { if (k != *kopt) { dstemp = zero; sstemp = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { diff = xpt[k + i__ * xpt_dim1] - xopt[i__]; dstemp += d__[i__] * diff; /* L40: */ sstemp += diff * diff; } if ((dstemp * dstemp) / (sstemp < dtest)) { ksav = k; dtest = dstemp * dstemp / sstemp; ds = dstemp; ss = sstemp; } } /* L50: */ } i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* L60: */ s[i__] = xpt[ksav + i__ * xpt_dim1] - xopt[i__]; } } ssden = dd * ss - ds * ds; iterc = 0; densav = zero; /* Begin the iteration by overwriting S with a vector that has the */ /* required length and direction. */ L70: ++iterc; temp = one / sqrt(ssden); xoptd = zero; xopts = zero; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { s[i__] = temp * (dd * s[i__] - ds * d__[i__]); xoptd += xopt[i__] * d__[i__]; /* L80: */ xopts += xopt[i__] * s[i__]; } /* Set the coefficients of the first two terms of BETA. */ tempa = half * xoptd * xoptd; tempb = half * xopts * xopts; den[0] = dd * (xoptsq + half * dd) + tempa + tempb; den[1] = two * xoptd * dd; den[2] = two * xopts * dd; den[3] = tempa - tempb; den[4] = xoptd * xopts; for (i__ = 6; i__ <= 9; ++i__) { /* L90: */ den[i__ - 1] = zero; } /* Put the coefficients of Wcheck in WVEC. */ i__2 = *npt; for (k = 1; k <= i__2; ++k) { tempa = zero; tempb = zero; tempc = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tempa += xpt[k + i__ * xpt_dim1] * d__[i__]; tempb += xpt[k + i__ * xpt_dim1] * s[i__]; /* L100: */ tempc += xpt[k + i__ * xpt_dim1] * xopt[i__]; } wvec[k + wvec_dim1] = quart * (tempa * tempa + tempb * tempb); wvec[k + (wvec_dim1 << 1)] = tempa * tempc; wvec[k + wvec_dim1 * 3] = tempb * tempc; wvec[k + (wvec_dim1 << 2)] = quart * (tempa * tempa - tempb * tempb); /* L110: */ wvec[k + wvec_dim1 * 5] = half * tempa * tempb; } i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { ip = i__ + *npt; wvec[ip + wvec_dim1] = zero; wvec[ip + (wvec_dim1 << 1)] = d__[i__]; wvec[ip + wvec_dim1 * 3] = s[i__]; wvec[ip + (wvec_dim1 << 2)] = zero; /* L120: */ wvec[ip + wvec_dim1 * 5] = zero; } /* Put the coefficents of THETA*Wcheck in PROD. */ for (jc = 1; jc <= 5; ++jc) { nw = *npt; if (jc == 2 || jc == 3) { nw = *ndim; } i__2 = *npt; for (k = 1; k <= i__2; ++k) { /* L130: */ prod[k + jc * prod_dim1] = zero; } i__2 = nptm; for (j = 1; j <= i__2; ++j) { sum = zero; i__1 = *npt; for (k = 1; k <= i__1; ++k) { /* L140: */ sum += zmat[k + j * zmat_dim1] * wvec[k + jc * wvec_dim1]; } if (j < *idz) { sum = -sum; } i__1 = *npt; for (k = 1; k <= i__1; ++k) { /* L150: */ prod[k + jc * prod_dim1] += sum * zmat[k + j * zmat_dim1]; } } if (nw == *ndim) { i__1 = *npt; for (k = 1; k <= i__1; ++k) { sum = zero; i__2 = *n; for (j = 1; j <= i__2; ++j) { /* L160: */ sum += bmat[k + j * bmat_dim1] * wvec[*npt + j + jc * wvec_dim1]; } /* L170: */ prod[k + jc * prod_dim1] += sum; } } i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = zero; i__2 = nw; for (i__ = 1; i__ <= i__2; ++i__) { /* L180: */ sum += bmat[i__ + j * bmat_dim1] * wvec[i__ + jc * wvec_dim1]; } /* L190: */ prod[*npt + j + jc * prod_dim1] = sum; } } /* Include in DEN the part of BETA that depends on THETA. */ i__1 = *ndim; for (k = 1; k <= i__1; ++k) { sum = zero; for (i__ = 1; i__ <= 5; ++i__) { par[i__ - 1] = half * prod[k + i__ * prod_dim1] * wvec[k + i__ * wvec_dim1]; /* L200: */ sum += par[i__ - 1]; } den[0] = den[0] - par[0] - sum; tempa = prod[k + prod_dim1] * wvec[k + (wvec_dim1 << 1)] + prod[k + ( prod_dim1 << 1)] * wvec[k + wvec_dim1]; tempb = prod[k + (prod_dim1 << 1)] * wvec[k + (wvec_dim1 << 2)] + prod[k + (prod_dim1 << 2)] * wvec[k + (wvec_dim1 << 1)]; tempc = prod[k + prod_dim1 * 3] * wvec[k + wvec_dim1 * 5] + prod[k + prod_dim1 * 5] * wvec[k + wvec_dim1 * 3]; den[1] = den[1] - tempa - half * (tempb + tempc); den[5] -= half * (tempb - tempc); tempa = prod[k + prod_dim1] * wvec[k + wvec_dim1 * 3] + prod[k + prod_dim1 * 3] * wvec[k + wvec_dim1]; tempb = prod[k + (prod_dim1 << 1)] * wvec[k + wvec_dim1 * 5] + prod[k + prod_dim1 * 5] * wvec[k + (wvec_dim1 << 1)]; tempc = prod[k + prod_dim1 * 3] * wvec[k + (wvec_dim1 << 2)] + prod[k + (prod_dim1 << 2)] * wvec[k + wvec_dim1 * 3]; den[2] = den[2] - tempa - half * (tempb - tempc); den[6] -= half * (tempb + tempc); tempa = prod[k + prod_dim1] * wvec[k + (wvec_dim1 << 2)] + prod[k + ( prod_dim1 << 2)] * wvec[k + wvec_dim1]; den[3] = den[3] - tempa - par[1] + par[2]; tempa = prod[k + prod_dim1] * wvec[k + wvec_dim1 * 5] + prod[k + prod_dim1 * 5] * wvec[k + wvec_dim1]; tempb = prod[k + (prod_dim1 << 1)] * wvec[k + wvec_dim1 * 3] + prod[k + prod_dim1 * 3] * wvec[k + (wvec_dim1 << 1)]; den[4] = den[4] - tempa - half * tempb; den[7] = den[7] - par[3] + par[4]; tempa = prod[k + (prod_dim1 << 2)] * wvec[k + wvec_dim1 * 5] + prod[k + prod_dim1 * 5] * wvec[k + (wvec_dim1 << 2)]; /* L210: */ den[8] -= half * tempa; } /* Extend DEN so that it holds all the coefficients of DENOM. */ sum = zero; for (i__ = 1; i__ <= 5; ++i__) { /* Computing 2nd power */ d__1 = prod[*knew + i__ * prod_dim1]; par[i__ - 1] = half * (d__1 * d__1); /* L220: */ sum += par[i__ - 1]; } denex[0] = alpha * den[0] + par[0] + sum; tempa = two * prod[*knew + prod_dim1] * prod[*knew + (prod_dim1 << 1)]; tempb = prod[*knew + (prod_dim1 << 1)] * prod[*knew + (prod_dim1 << 2)]; tempc = prod[*knew + prod_dim1 * 3] * prod[*knew + prod_dim1 * 5]; denex[1] = alpha * den[1] + tempa + tempb + tempc; denex[5] = alpha * den[5] + tempb - tempc; tempa = two * prod[*knew + prod_dim1] * prod[*knew + prod_dim1 * 3]; tempb = prod[*knew + (prod_dim1 << 1)] * prod[*knew + prod_dim1 * 5]; tempc = prod[*knew + prod_dim1 * 3] * prod[*knew + (prod_dim1 << 2)]; denex[2] = alpha * den[2] + tempa + tempb - tempc; denex[6] = alpha * den[6] + tempb + tempc; tempa = two * prod[*knew + prod_dim1] * prod[*knew + (prod_dim1 << 2)]; denex[3] = alpha * den[3] + tempa + par[1] - par[2]; tempa = two * prod[*knew + prod_dim1] * prod[*knew + prod_dim1 * 5]; denex[4] = alpha * den[4] + tempa + prod[*knew + (prod_dim1 << 1)] * prod[ *knew + prod_dim1 * 3]; denex[7] = alpha * den[7] + par[3] - par[4]; denex[8] = alpha * den[8] + prod[*knew + (prod_dim1 << 2)] * prod[*knew + prod_dim1 * 5]; /* Seek the value of the angle that maximizes the modulus of DENOM. */ sum = denex[0] + denex[1] + denex[3] + denex[5] + denex[7]; denold = sum; denmax = sum; isave = 0; iu = 49; temp = twopi / (double) (iu + 1); par[0] = one; i__1 = iu; for (i__ = 1; i__ <= i__1; ++i__) { angle = (double) i__ * temp; par[1] = cos(angle); par[2] = sin(angle); for (j = 4; j <= 8; j += 2) { par[j - 1] = par[1] * par[j - 3] - par[2] * par[j - 2]; /* L230: */ par[j] = par[1] * par[j - 2] + par[2] * par[j - 3]; } sumold = sum; sum = zero; for (j = 1; j <= 9; ++j) { /* L240: */ sum += denex[j - 1] * par[j - 1]; } if (abs(sum) > abs(denmax)) { denmax = sum; isave = i__; tempa = sumold; } else if (i__ == isave + 1) { tempb = sum; } /* L250: */ } if (isave == 0) { tempa = sum; } if (isave == iu) { tempb = denold; } step = zero; if (tempa != tempb) { tempa -= denmax; tempb -= denmax; step = half * (tempa - tempb) / (tempa + tempb); } angle = temp * ((double) isave + step); /* Calculate the new parameters of the denominator, the new VLAG vector */ /* and the new D. Then test for convergence. */ par[1] = cos(angle); par[2] = sin(angle); for (j = 4; j <= 8; j += 2) { par[j - 1] = par[1] * par[j - 3] - par[2] * par[j - 2]; /* L260: */ par[j] = par[1] * par[j - 2] + par[2] * par[j - 3]; } *beta = zero; denmax = zero; for (j = 1; j <= 9; ++j) { *beta += den[j - 1] * par[j - 1]; /* L270: */ denmax += denex[j - 1] * par[j - 1]; } i__1 = *ndim; for (k = 1; k <= i__1; ++k) { vlag[k] = zero; for (j = 1; j <= 5; ++j) { /* L280: */ vlag[k] += prod[k + j * prod_dim1] * par[j - 1]; } } tau = vlag[*knew]; dd = zero; tempa = zero; tempb = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = par[1] * d__[i__] + par[2] * s[i__]; w[i__] = xopt[i__] + d__[i__]; /* Computing 2nd power */ d__1 = d__[i__]; dd += d__1 * d__1; tempa += d__[i__] * w[i__]; /* L290: */ tempb += w[i__] * w[i__]; } if (iterc >= *n) { goto L340; } if (iterc > 1) { densav = max(densav,denold); } if (abs(denmax) <= abs(densav) * 1.1) { goto L340; } densav = denmax; /* Set S to half the gradient of the denominator with respect to D. */ /* Then branch for the next iteration. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { temp = tempa * xopt[i__] + tempb * d__[i__] - vlag[*npt + i__]; /* L300: */ s[i__] = tau * bmat[*knew + i__ * bmat_dim1] + alpha * temp; } i__1 = *npt; for (k = 1; k <= i__1; ++k) { sum = zero; i__2 = *n; for (j = 1; j <= i__2; ++j) { /* L310: */ sum += xpt[k + j * xpt_dim1] * w[j]; } temp = (tau * w[*n + k] - alpha * vlag[k]) * sum; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* L320: */ s[i__] += temp * xpt[k + i__ * xpt_dim1]; } } ss = zero; ds = zero; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing 2nd power */ d__1 = s[i__]; ss += d__1 * d__1; /* L330: */ ds += d__[i__] * s[i__]; } ssden = dd * ss - ds * ds; if (ssden >= dd * 1e-8 * ss) { goto L70; } /* Set the vector W before the RETURN from the subroutine. */ L340: i__2 = *ndim; for (k = 1; k <= i__2; ++k) { w[k] = zero; for (j = 1; j <= 5; ++j) { /* L350: */ w[k] += wvec[k + j * wvec_dim1] * par[j - 1]; } } vlag[*kopt] += one; return 0; } int NewUoaOptimizer ::update(long int *n, long int *npt, double *bmat, double *zmat, long int *idz, long int *ndim, double *vlag, double *beta, long int *knew, double *w) { /* System generated locals */ long int bmat_dim1, bmat_offset, zmat_dim1, zmat_offset, i__1, i__2; double d__1, d__2; /* Builtin functions */ // double sqrt(double); /* Local variables */ static long int i__, j, ja, jb, jl, jp; static double one, tau, temp; static long int nptm; static double zero; static long int iflag; static double scala, scalb, alpha, denom, tempa, tempb, tausq; /* The arrays BMAT and ZMAT with IDZ are updated, in order to shift the */ /* interpolation point that has index KNEW. On entry, VLAG contains the */ /* components of the vector Theta*Wcheck+e_b of the updating formula */ /* (6.11), and BETA holds the value of the parameter that has this name. */ /* The vector W is used for working space. */ /* Set some constants. */ /* Parameter adjustments */ zmat_dim1 = *npt; zmat_offset = 1 + zmat_dim1; zmat -= zmat_offset; bmat_dim1 = *ndim; bmat_offset = 1 + bmat_dim1; bmat -= bmat_offset; --vlag; --w; /* Function Body */ one = 1.; zero = 0.; nptm = *npt - *n - 1; /* Apply the rotations that put zeros in the KNEW-th row of ZMAT. */ jl = 1; i__1 = nptm; for (j = 2; j <= i__1; ++j) { if (j == *idz) { jl = *idz; } else if (zmat[*knew + j * zmat_dim1] != zero) { /* Computing 2nd power */ d__1 = zmat[*knew + jl * zmat_dim1]; /* Computing 2nd power */ d__2 = zmat[*knew + j * zmat_dim1]; temp = sqrt(d__1 * d__1 + d__2 * d__2); tempa = zmat[*knew + jl * zmat_dim1] / temp; tempb = zmat[*knew + j * zmat_dim1] / temp; i__2 = *npt; for (i__ = 1; i__ <= i__2; ++i__) { temp = tempa * zmat[i__ + jl * zmat_dim1] + tempb * zmat[i__ + j * zmat_dim1]; zmat[i__ + j * zmat_dim1] = tempa * zmat[i__ + j * zmat_dim1] - tempb * zmat[i__ + jl * zmat_dim1]; /* L10: */ zmat[i__ + jl * zmat_dim1] = temp; } zmat[*knew + j * zmat_dim1] = zero; } /* L20: */ } /* Put the first NPT components of the KNEW-th column of HLAG into W, */ /* and calculate the parameters of the updating formula. */ tempa = zmat[*knew + zmat_dim1]; if (*idz >= 2) { tempa = -tempa; } if (jl > 1) { tempb = zmat[*knew + jl * zmat_dim1]; } i__1 = *npt; for (i__ = 1; i__ <= i__1; ++i__) { w[i__] = tempa * zmat[i__ + zmat_dim1]; if (jl > 1) { w[i__] += tempb * zmat[i__ + jl * zmat_dim1]; } /* L30: */ } alpha = w[*knew]; tau = vlag[*knew]; tausq = tau * tau; denom = alpha * *beta + tausq; vlag[*knew] -= one; /* Complete the updating of ZMAT when there is only one nonzero element */ /* in the KNEW-th row of the new matrix ZMAT, but, if IFLAG is set to one, */ /* then the first column of ZMAT will be exchanged with another one later. */ iflag = 0; if (jl == 1) { temp = sqrt((abs(denom))); tempb = tempa / temp; tempa = tau / temp; i__1 = *npt; for (i__ = 1; i__ <= i__1; ++i__) { /* L40: */ zmat[i__ + zmat_dim1] = tempa * zmat[i__ + zmat_dim1] - tempb * vlag[i__]; } if (*idz == 1 && temp < zero) { *idz = 2; } if (*idz >= 2 && temp >= zero) { iflag = 1; } } else { /* Complete the updating of ZMAT in the alternative case. */ ja = 1; if (*beta >= zero) { ja = jl; } jb = jl + 1 - ja; temp = zmat[*knew + jb * zmat_dim1] / denom; tempa = temp * *beta; tempb = temp * tau; temp = zmat[*knew + ja * zmat_dim1]; scala = one / sqrt(abs(*beta) * temp * temp + tausq); scalb = scala * sqrt((abs(denom))); i__1 = *npt; for (i__ = 1; i__ <= i__1; ++i__) { zmat[i__ + ja * zmat_dim1] = scala * (tau * zmat[i__ + ja * zmat_dim1] - temp * vlag[i__]); /* L50: */ zmat[i__ + jb * zmat_dim1] = scalb * (zmat[i__ + jb * zmat_dim1] - tempa * w[i__] - tempb * vlag[i__]); } if (denom <= zero) { if (*beta < zero) { ++(*idz); } if (*beta >= zero) { iflag = 1; } } } /* IDZ is reduced in the following case, and usually the first column */ /* of ZMAT is exchanged with a later one. */ if (iflag == 1) { --(*idz); i__1 = *npt; for (i__ = 1; i__ <= i__1; ++i__) { temp = zmat[i__ + zmat_dim1]; zmat[i__ + zmat_dim1] = zmat[i__ + *idz * zmat_dim1]; /* L60: */ zmat[i__ + *idz * zmat_dim1] = temp; } } /* Finally, update the matrix BMAT. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { jp = *npt + j; w[jp] = bmat[*knew + j * bmat_dim1]; tempa = (alpha * vlag[jp] - tau * w[jp]) / denom; tempb = (-(*beta) * w[jp] - tau * vlag[jp]) / denom; i__2 = jp; for (i__ = 1; i__ <= i__2; ++i__) { bmat[i__ + j * bmat_dim1] = bmat[i__ + j * bmat_dim1] + tempa * vlag[i__] + tempb * w[i__]; if (i__ > *npt) { bmat[jp + (i__ - *npt) * bmat_dim1] = bmat[i__ + j * bmat_dim1]; } /* L70: */ } } return 0; } int NewUoaOptimizer ::trsapp(long int *n, long int *npt, double *xopt, double *xpt, double *gq, double *hq, double *pq, double *delta, double *step, double *d__, double *g, double *hd, double *hs, double *crvmin) { /* System generated locals */ long int xpt_dim1, xpt_offset, i__1, i__2; double d__1, d__2; /* Local variables */ static long int i__, j, k; static double dd, cf, dg, gg; static long int ih; static double ds, sg; static long int iu; static double ss, dhd, dhs, cth, sgk, shs, sth, qadd, half, qbeg, qred, qmin, temp, qsav, qnew, zero, ggbeg, alpha, angle, reduc; static long int iterc; static double ggsav, delsq, tempa, tempb; static long int isave; static double bstep, ratio, twopi; static long int itersw; static double angtest; static long int itermax; /* N is the number of variables of a quadratic objective function, Q say. */ /* The arguments NPT, XOPT, XPT, GQ, HQ and PQ have their usual meanings, */ /* in order to define the current quadratic model Q. */ /* DELTA is the trust region radius, and has to be positive. */ /* STEP will be set to the calculated trial step. */ /* The arrays D, G, HD and HS will be used for working space. */ /* CRVMIN will be set to the least curvature of H along the conjugate */ /* directions that occur, except that it is set to zero if STEP goes */ /* all the way to the trust region boundary. */ /* The calculation of STEP begins with the truncated conjugate gradient */ /* method. If the boundary of the trust region is reached, then further */ /* changes to STEP may be made, each one being in the 2D space spanned */ /* by the current STEP and the corresponding gradient of Q. Thus STEP */ /* should provide a substantial reduction to Q within the trust region. */ /* Initialization, which includes setting HD to H times XOPT. */ /* Parameter adjustments */ xpt_dim1 = *npt; xpt_offset = 1 + xpt_dim1; xpt -= xpt_offset; --xopt; --gq; --hq; --pq; --step; --d__; --g; --hd; --hs; /* Function Body */ half = .5; zero = 0.; twopi = atan(1.) * 8.; delsq = *delta * *delta; iterc = 0; itermax = *n; itersw = itermax; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* L10: */ d__[i__] = xopt[i__]; } goto L170; /* Prepare for the first line search. */ L20: qred = zero; dd = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { step[i__] = zero; hs[i__] = zero; g[i__] = gq[i__] + hd[i__]; d__[i__] = -g[i__]; /* L30: */ /* Computing 2nd power */ d__1 = d__[i__]; dd += d__1 * d__1; } *crvmin = zero; if (dd == zero) { goto L160; } ds = zero; ss = zero; gg = dd; ggbeg = gg; /* Calculate the step to the trust region boundary and the product HD. */ L40: ++iterc; temp = delsq - ss; bstep = temp / (ds + sqrt(ds * ds + dd * temp)); goto L170; L50: dhd = zero; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* L60: */ dhd += d__[j] * hd[j]; } /* Update CRVMIN and set the step-length ALPHA. */ alpha = bstep; if (dhd > zero) { temp = dhd / dd; if (iterc == 1) { *crvmin = temp; } *crvmin = min(*crvmin,temp); /* Computing MIN */ d__1 = alpha, d__2 = gg / dhd; alpha = min(d__1,d__2); } qadd = alpha * (gg - half * alpha * dhd); qred += qadd; /* Update STEP and HS. */ ggsav = gg; gg = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { step[i__] += alpha * d__[i__]; hs[i__] += alpha * hd[i__]; /* L70: */ /* Computing 2nd power */ d__1 = g[i__] + hs[i__]; gg += d__1 * d__1; } /* Begin another conjugate direction iteration if required. */ if (alpha < bstep) { if (qadd <= qred * .01) { goto L160; } if (gg <= ggbeg * 1e-4) { goto L160; } if (iterc == itermax) { goto L160; } temp = gg / ggsav; dd = zero; ds = zero; ss = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = temp * d__[i__] - g[i__] - hs[i__]; /* Computing 2nd power */ d__1 = d__[i__]; dd += d__1 * d__1; ds += d__[i__] * step[i__]; /* L80: */ /* Computing 2nd power */ d__1 = step[i__]; ss += d__1 * d__1; } if (ds <= zero) { goto L160; } if (ss < delsq) { goto L40; } } *crvmin = zero; itersw = iterc; /* Test whether an alternative iteration is required. */ L90: if (gg <= ggbeg * 1e-4) { goto L160; } sg = zero; shs = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { sg += step[i__] * g[i__]; /* L100: */ shs += step[i__] * hs[i__]; } sgk = sg + shs; angtest = sgk / sqrt(gg * delsq); if (angtest <= -.99) { goto L160; } /* Begin the alternative iteration by calculating D and HD and some */ /* scalar products. */ ++iterc; temp = sqrt(delsq * gg - sgk * sgk); tempa = delsq / temp; tempb = sgk / temp; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* L110: */ d__[i__] = tempa * (g[i__] + hs[i__]) - tempb * step[i__]; } goto L170; L120: dg = zero; dhd = zero; dhs = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { dg += d__[i__] * g[i__]; dhd += hd[i__] * d__[i__]; /* L130: */ dhs += hd[i__] * step[i__]; } /* Seek the value of the angle that minimizes Q. */ cf = half * (shs - dhd); qbeg = sg + cf; qsav = qbeg; qmin = qbeg; isave = 0; iu = 49; temp = twopi / (double) (iu + 1); i__1 = iu; for (i__ = 1; i__ <= i__1; ++i__) { angle = (double) i__ * temp; cth = cos(angle); sth = sin(angle); qnew = (sg + cf * cth) * cth + (dg + dhs * cth) * sth; if (qnew < qmin) { qmin = qnew; isave = i__; tempa = qsav; } else if (i__ == isave + 1) { tempb = qnew; } /* L140: */ qsav = qnew; } if ((double) isave == zero) { tempa = qnew; } if (isave == iu) { tempb = qbeg; } angle = zero; if (tempa != tempb) { tempa -= qmin; tempb -= qmin; angle = half * (tempa - tempb) / (tempa + tempb); } angle = temp * ((double) isave + angle); /* Calculate the new STEP and HS. Then test for convergence. */ cth = cos(angle); sth = sin(angle); reduc = qbeg - (sg + cf * cth) * cth - (dg + dhs * cth) * sth; gg = zero; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { step[i__] = cth * step[i__] + sth * d__[i__]; hs[i__] = cth * hs[i__] + sth * hd[i__]; /* L150: */ /* Computing 2nd power */ d__1 = g[i__] + hs[i__]; gg += d__1 * d__1; } qred += reduc; ratio = reduc / qred; if (iterc < itermax && ratio > .01) { goto L90; } L160: return 0; /* The following instructions act as a subroutine for setting the vector */ /* HD to the vector D multiplied by the second derivative matrix of Q. */ /* They are called from three different places, which are distinguished */ /* by the value of ITERC. */ L170: i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* L180: */ hd[i__] = zero; } i__1 = *npt; for (k = 1; k <= i__1; ++k) { temp = zero; i__2 = *n; for (j = 1; j <= i__2; ++j) { /* L190: */ temp += xpt[k + j * xpt_dim1] * d__[j]; } temp *= pq[k]; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* L200: */ hd[i__] += temp * xpt[k + i__ * xpt_dim1]; } } ih = 0; i__2 = *n; for (j = 1; j <= i__2; ++j) { i__1 = j; for (i__ = 1; i__ <= i__1; ++i__) { ++ih; if (i__ < j) { hd[j] += hq[ih] * d__[i__]; } /* L210: */ hd[i__] += hq[ih] * d__[j]; } } if (iterc == 0) { goto L20; } if (iterc <= itersw) { goto L50; } goto L120; } void NewUoaOptimizer ::PrintSelf( std::ostream &os, Indent indent ) const { Superclass::PrintSelf(os,indent); } }